A structural basis for reading fluency: White matter defects in a genetic brain malformation
Citation Manager Formats
This article has a correction. Please see:

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.
Abstract
Background: Multiple lines of evidence have suggested that developmental dyslexia may be associated with abnormalities of neuronal migration or axonal connectivity. In patients with periventricular nodular heterotopia—a rare genetic brain malformation characterized by misplaced nodules of gray matter along the lateral ventricles—a specific and unexpected reading disability is present, despite normal intelligence. We sought to investigate the cognitive and structural brain bases of this phenomenon.
Methods: Ten adult subjects with heterotopia, 10 with dyslexia, and 10 normal controls were evaluated, using a battery of neuropsychometric measures. White matter integrity and fiber tract organization were examined in six heterotopia subjects, using diffusion tensor imaging methods.
Results: Subjects with heterotopia and those with developmental dyslexia shared a common behavioral profile, with specific deficits in reading fluency. Individuals with dyslexia seemed to have a more prominent phonological impairment than heterotopia subjects. Periventricular nodular heterotopia was associated with specific, focal disruptions in white matter microstructure and organization in the vicinity of gray matter nodules. The degree of white matter integrity correlated with reading fluency in this population.
Conclusions: We demonstrate that a genetic disorder of gray matter heterotopia shares behavioral characteristics with developmental dyslexia, and that focal white matter defects in this disorder may serve as the structural brain basis of this phenomenon. Our findings represent a potential model for the use of developmental brain malformations in the investigation of abnormal cognitive function.
Glossary
- DTI=
- diffusion tensor imaging;
- FA=
- fractional anisotropy;
- PNH=
- periventricular nodular heterotopia;
- ROI=
- region of interest.
AAN Members: Sign in with your AAN member credentials (e-mail or 6-digit Member ID number)
Non-AAN Member subscribers: Sign in with subscriber credentials
Log in using your username and password
Purchase access
For assistance, please contact:
AAN Members (800) 879-1960 or (612) 928-6000 (International)
Non-AAN Member subscribers (800) 638-3030 or (301) 223-2300 option 3, select 1 (international)
Sign Up
Information on how to subscribe to Neurology and Neurology: Clinical Practice can be found here
Purchase
Individual access to articles is available through the Add to Cart option on the article page. Access for 1 day (from the computer you are currently using) is US$ 39.00.
Disputes & Debates: Rapid online correspondence
NOTE: All contributors' disclosures must be entered and current in our database before comments can be posted. Enter and update disclosures at http://submit.neurology.org. Exception: replies to comments concerning an article you originally authored do not require updated disclosures.
- Stay timely. Submit only on articles published within the last 8 weeks.
- Do not be redundant. Read any comments already posted on the article prior to submission.
- 200 words maximum.
- 5 references maximum. Reference 1 must be the article on which you are commenting.
- 5 authors maximum. Exception: replies can include all original authors of the article.
- Submitted comments are subject to editing and editor review prior to posting.

