A 38-year-old woman presented with an 8-year history of progressive dysarthria, gait disturbance, and hyperreflexia. MRI revealed leukodystrophy involving brainstem with pial signal changes and spinal cord atrophy (figure 1). Brain biopsy showed Rosenthal fibers (figure 2). She had a de novo mutation of the glial fibrillary acidic protein (GFAP) gene (c.799G>C causing p.Ala267Pro).

Alexander disease is caused by gain-of-function mutation of the GFAP gene. GFAP is an intermediate filament, and mutations result in astrocytic accumulation of eosinophilic inclusions known as Rosenthal fibers.1 Late-onset patients show brainstem features (ataxia, dysphagia, dysphonia, and palatal myoclonus) with hindbrain-predominant leukodystrophy and spinal cord atrophy.1,2

AUTHOR CONTRIBUTIONS

Drs. Keon-Joo Lee and Jangsup Moon: drafting the manuscript. Drs. Keon-Joo Lee, Jangsup Moon, and Soon-Tae Lee: study concept, design, and chart review. Dr. Soon-Tae Lee: critical revision of the manuscript and funding support.

STUDY FUNDING

Supported by a grant (A121911) of the Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea.

DISCLOSURE

The authors report no disclosures relevant to the manuscript. Go to Neurology.org for full disclosures.

REFERENCES

Hematoxylin & eosin staining of the white matter biopsy showed typical morphology of Rosenthal fibers (arrowheads). Rosenthal fibers are beaded, elongated, or corkscrew-shaped intracytoplasmic inclusions that represent accumulation of intermediate filament. Rosenthal fibers are seen in neoplasms (such as pilocytic astrocytomas), Alexander disease, and reactive tissues with gliosis.
Teaching NeuroImages: Late-onset Alexander disease
Keon-Joo Lee, Jangsup Moon and Soon-Tae Lee
Neurology 2014;83:e197-e198
DOI 10.1212/WNL.0000000000001032

This information is current as of November 24, 2014

<table>
<thead>
<tr>
<th>Updated Information & Services</th>
<th>including high resolution figures, can be found at: http://n.neurology.org/content/83/22/e197.full</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplementary Material</td>
<td>Supplementary material can be found at: http://n.neurology.org/content/suppl/2014/11/23/WNL.00000000000001032.DC1</td>
</tr>
<tr>
<td>References</td>
<td>This article cites 2 articles, 2 of which you can access for free at: http://n.neurology.org/content/83/22/e197.full#ref-list-1</td>
</tr>
<tr>
<td>Subspecialty Collections</td>
<td>This article, along with others on similar topics, appears in the following collection(s): All Genetics http://n.neurology.org/cgi/collection/all_genetics MRI http://n.neurology.org/cgi/collection/mri</td>
</tr>
<tr>
<td>Permissions & Licensing</td>
<td>Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: http://www.neurology.org/about/about_the_journal#permissions</td>
</tr>
<tr>
<td>Reprints</td>
<td>Information about ordering reprints can be found online: http://n.neurology.org/subscribers/advertise</td>
</tr>
</tbody>
</table>