Channelopathy-related SCN10A gene variants predict cerebellar dysfunction in multiple sclerosis
Citation Manager Formats

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.
Abstract
Objective: To determine the motor-behavioral and neural correlates of putative functional common variants in the sodium-channel NaV1.8 encoding gene (SCN10A) in vivo in patients with multiple sclerosis (MS).
Methods: We recruited 161 patients with relapsing-onset MS and 94 demographically comparable healthy participants. All patients with MS underwent structural MRI and clinical examinations (Expanded Disability Status Scale [EDSS] and Multiple Sclerosis Functional Composite [MSFC]). Whole-brain voxel-wise and cerebellar volumetry were performed to assess differences in regional brain volumes between genotype groups. Resting-state fMRI was acquired from 62 patients with MS to evaluate differences in cerebellar functional connectivity. All participants were genotyped for 4 potentially functional SCN10A polymorphisms.
Results: Two SCN10A polymorphisms in high linkage disequilibrium (r2 = 0.95) showed significant association with MSFC performance in patients with MS (rs6795970: p = 6.2 × 10−4; rs6801957: p = 0.0025). Patients with MS with rs6795970AA genotype performed significantly worse than rs6795970G carriers in MSFC (p = 1.8 × 10−4) and all of its subscores. This association was independent of EDSS and cerebellar atrophy. Although the genotype groups showed no difference in regional brain volumes, rs6795970AA carriers demonstrated significantly diminished cerebellar functional connectivity with the thalami and midbrain. No significant SCN10A–genotype effect was observed on MSFC performance in healthy participants.
Conclusions: Our data suggest that SCN10A variation substantially influences functional status, including prominent effects on motor coordination in patients with MS. These findings were supported by the effects of this variant on a neural system important for motor coordination, namely cerebello-thalamic circuitry. Overall, our findings add to the emerging evidence that suggests that sodium channel NaV1.8 could serve as a target for future drug-based interventions to treat cerebellar dysfunction in MS.
GLOSSARY
- BOLD=
- blood oxygenation level–dependent;
- CRIMSON=
- Cross-Modal Research Initiative for Multiple Sclerosis and Optic Neuritis;
- EAE=
- experimental autoimmune encephalomyelitis;
- EDSS=
- Expanded Disability Status Scale;
- FWE=
- familywise error;
- MAF=
- minor allele frequency;
- MS=
- multiple sclerosis;
- MSFC=
- Multiple Sclerosis Functional Composite;
- PASAT=
- Paced Auditory Serial Addition Test;
- ROI=
- region of interest;
- SARA=
- Scale for the Assessment and Rating of Ataxia;
- SNP=
- single nucleotide polymorphism
Footnotes
↵* These authors contributed equally to this work.
Go to Neurology.org for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.
Supplemental data at Neurology.org
Editorial, page 406
See page 473
- Received December 26, 2014.
- Accepted in final form July 27, 2015.
- © 2016 American Academy of Neurology
AAN Members: Sign in with your AAN member credentials (e-mail or 6-digit Member ID number)
Non-AAN Member subscribers: Sign in with subscriber credentials
Log in using your username and password
Purchase access
For assistance, please contact:
AAN Members (800) 879-1960 or (612) 928-6000 (International)
Non-AAN Member subscribers (800) 638-3030 or (301) 223-2300 option 3, select 1 (international)
Sign Up
Information on how to subscribe to Neurology and Neurology: Clinical Practice can be found here
Purchase
Individual access to articles is available through the Add to Cart option on the article page. Access for 1 day (from the computer you are currently using) is US$ 39.00.
Disputes & Debates: Rapid online correspondence
NOTE: All contributors' disclosures must be entered and current in our database before comments can be posted. Enter and update disclosures at http://submit.neurology.org. Exception: replies to comments concerning an article you originally authored do not require updated disclosures.
- Stay timely. Submit only on articles published within the last 8 weeks.
- Do not be redundant. Read any comments already posted on the article prior to submission.
- 200 words maximum.
- 5 references maximum. Reference 1 must be the article on which you are commenting.
- 5 authors maximum. Exception: replies can include all original authors of the article.
- Submitted comments are subject to editing and editor review prior to posting.