Resting bold fMRI differentiates dementia with Lewy bodies vs Alzheimer disease
Citation Manager Formats
Make Comment
See Comments

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.
Abstract
Objective: Clinicopathologic phenotypes of dementia with Lewy bodies (DLB) and Alzheimer disease (AD) often overlap, making discrimination difficult. We performed resting state blood oxygen level–dependent (BOLD) functional connectivity MRI (fcMRI) to determine whether there were differences between AD and DLB.
Methods: Participants (n = 88) enrolled in a longitudinal study of memory and aging underwent 3-T fcMRI. Clinical diagnoses of probable DLB (n = 15) were made according to published criteria. Cognitively normal control participants (n = 38) were selected for the absence of cerebral amyloid burden as imaged with Pittsburgh compound B (PiB). Probable AD cases (n = 35) met published criteria and had appreciable amyloid deposits with PiB imaging. Functional images were collected using a gradient spin-echo sequence sensitive to BOLD contrast (T2* weighting). Correlation maps selected a seed region in the combined bilateral precuneus.
Results: Participants with DLB had a functional connectivity pattern for the precuneus seed region that was distinct from AD; both the DLB and AD groups had functional connectivity patterns that differed from the cognitively normal group. In the DLB group, we found increased connectivity between the precuneus and regions in the dorsal attention network and the putamen. In contrast, we found decreased connectivity between the precuneus and other task-negative default regions and visual cortices. There was also a reversal of connectivity in the right hippocampus.
Conclusions: Changes in functional connectivity in DLB indicate patterns of activation that are distinct from those seen in AD and may improve discrimination of DLB from AD and cognitively normal individuals. Since patterns of connectivity differ between AD and DLB groups, measurements of BOLD functional connectivity can shed further light on neuroanatomic connections that distinguish DLB from AD.
Footnotes
-
Study funding: Supported by the NIH/NIA P50 AG05681, P01 AG03991, and P01 AG026276.
-
Supplemental data at www.neurology.org
-
- AD
- Alzheimer disease
- BA
- Brodmann area
- BOLD
- blood oxygen level–dependent
- CDR
- Clinical Dementia Rating
- DLB
- dementia with Lewy bodies
- DMN
- default mode network
- fcMRI
- functional connectivity MRI
- FDG
- fluorodeoxyglucose
- FSE
- fast spin echo
- MCBP
- mean cortical binding potential
- MPRAGE
- magnetization-prepared rapid gradient echo
- PiB
- Pittsburgh compound B
- TE
- echo time
- TI
- inversion time
- TR
- repetition time
- Received July 6, 2010.
- Accepted February 10, 2011.
- Copyright © 2011 by AAN Enterprises, Inc.
AAN Members
We have changed the login procedure to improve access between AAN.com and the Neurology journals. If you are experiencing issues, please log out of AAN.com and clear history and cookies. (For instructions by browser, please click the instruction pages below). After clearing, choose preferred Journal and select login for AAN Members. You will be redirected to a login page where you can log in with your AAN ID number and password. When you are returned to the Journal, your name should appear at the top right of the page.
AAN Non-Member Subscribers
Purchase access
For assistance, please contact:
AAN Members (800) 879-1960 or (612) 928-6000 (International)
Non-AAN Member subscribers (800) 638-3030 or (301) 223-2300 option 3, select 1 (international)
Sign Up
Information on how to subscribe to Neurology and Neurology: Clinical Practice can be found here
Purchase
Individual access to articles is available through the Add to Cart option on the article page. Access for 1 day (from the computer you are currently using) is US$ 39.00. Pay-per-view content is for the use of the payee only, and content may not be further distributed by print or electronic means. The payee may view, download, and/or print the article for his/her personal, scholarly, research, and educational use. Distributing copies (electronic or otherwise) of the article is not allowed.
Letters: Rapid online correspondence
REQUIREMENTS
You must ensure that your Disclosures have been updated within the previous six months. Please go to our Submission Site to add or update your Disclosure information.
Your co-authors must send a completed Publishing Agreement Form to Neurology Staff (not necessary for the lead/corresponding author as the form below will suffice) before you upload your comment.
If you are responding to a comment that was written about an article you originally authored:
You (and co-authors) do not need to fill out forms or check disclosures as author forms are still valid
and apply to letter.
Submission specifications:
- Submissions must be < 200 words with < 5 references. Reference 1 must be the article on which you are commenting.
- Submissions should not have more than 5 authors. (Exception: original author replies can include all original authors of the article)
- Submit only on articles published within 6 months of issue date.
- Do not be redundant. Read any comments already posted on the article prior to submission.
- Submitted comments are subject to editing and editor review prior to posting.
You May Also be Interested in
Dr. Babak Hooshmand and Dr. David Smith
► Watch
Topics Discussed
Alert Me
Recommended articles
-
Articles
Imaging amyloid deposition in Lewy body diseasesS. N. Gomperts, D. M. Rentz, E. Moran et al.Neurology, September 15, 2008 -
Article
Amyloid and cerebrovascular burden divergently influence brain functional network changes over timeJoanna Su Xian Chong, Hyemin Jang, Hee Jin Kim et al.Neurology, September 11, 2019 -
Article
Dementia with Lewy bodiesBasis of cingulate island signJonathan Graff-Radford, Melissa E. Murray, Val J. Lowe et al.Neurology, July 23, 2014 -
Articles
EEG-fMRIAdding to standard evaluations of patients with nonlesional frontal lobe epilepsyF. Moeller, L. Tyvaert, D. K. Nguyen et al.Neurology, December 07, 2009