Does vigorous exercise have a neuroprotective effect in Parkinson disease?
Citation Manager Formats
Make Comment
See Comments

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.
Abstract
Parkinson disease (PD) is progressive, with dementia and medication-refractory motor problems common reasons for late-stage nursing-home placement. Increasing evidence suggests that ongoing vigorous exercise/physical fitness may favorably influence this progression. Parkinsonian animal models reveal exercise-related protection from dopaminergic neurotoxins, apparently mediated by brain neurotrophic factors and neuroplasticity (predicted from in vitro studies). Similarly, exercise consistently improves cognition in animals, also linked to enhanced neuroplasticity and increased neurotrophic factor expression. In these animal models, immobilization has the opposite effect. Brain-derived neurotrophic factor (BDNF) may mediate at least some of this exercise benefit. In humans, exercise increases serum BDNF, and this is known to cross the blood–brain barrier. PD risk in humans is significantly reduced by midlife exercise, documented in large prospective studies. No studies have addressed whether exercise influences dementia risk in PD, but exercised patients with PD improve cognitive scores. Among seniors in general, exercise or physical fitness has not only been associated with better cognitive scores, but midlife exercise significantly reduces the later risk of both dementia and mild cognitive impairment. Finally, numerous studies in seniors with and without dementia have reported increased cerebral gray matter volumes associated with physical fitness or exercise. These findings have several implications for PD clinicians. 1) Ongoing vigorous exercise and physical fitness should be highly encouraged. 2) PD physical therapy programs should include structured, graduated fitness instruction and guidance for deconditioned patients with PD. 3) Levodopa and other forms of dopamine replenishment therapy should be utilized to achieve the maximum capability and motivation for patients to maintain fitness.
Footnotes
-
- AD=
- Alzheimer disease;
- BDNF=
- brain-derived neurotrophic factor;
- GDNF=
- glial-derived neurotrophic factor;
- MCI=
- mild cognitive impairment;
- PD=
- Parkinson disease;
- VEGF=
- vascular endothelial growth factor.
-
Supplemental data at www.neurology.org
-
References e1–e51 are available on the Neurology® Web site at www.neurology.org.
-
Scan this code with your smartphone to access this feature
-
Podcast
Scan this code with your smartphone to access this feature
- Received December 19, 2010.
- Accepted March 10, 2011.
- Copyright © 2011 by AAN Enterprises, Inc.
AAN Members: Sign in with your AAN member credentials (e-mail or 6-digit Member ID number)
Non-AAN Member subscribers: Sign in with subscriber credentials
Log in using your username and password
Purchase access
AAN members must change their passwords on the AAN site
For assistance, please contact:
AAN Members (800) 879-1960 or (612) 928-6000 (International)
Non-AAN Member subscribers (800) 638-3030 or (301) 223-2300 option 3, select 1 (international)
Sign Up
Information on how to subscribe to Neurology and Neurology: Clinical Practice can be found here
Purchase
Individual access to articles is available through the Add to Cart option on the article page.
Access for 1 day (from the computer you are currently using) is US$ 39.00.
Pay-per-view content is for the use of the payee only, and content may not be further distributed by print or electronic means.
The payee may view, download, and/or print the article for his/her personal, scholarly, research, and educational use. Distributing copies (electronic or otherwise) of the article is not allowed.
Disputes & Debates: Rapid online correspondence
NOTE: All authors' disclosures must be entered and current in our database before comments can be posted. Enter and update disclosures at http://submit.neurology.org. Exception: replies to comments concerning an article you originally authored do not require updated disclosures.
- Stay timely. Submit only on articles published within the last 8 weeks.
- Do not be redundant. Read any comments already posted on the article prior to submission.
- 200 words maximum.
- 5 references maximum. Reference 1 must be the article on which you are commenting.
- 5 authors maximum. Exception: replies can include all original authors of the article.
- Submitted comments are subject to editing and editor review prior to posting.