White matter microstructure deteriorates across cognitive stages in Parkinson disease
Citation Manager Formats
Make Comment
See Comments

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.
Abstract
Objectives: To characterize different stages of Parkinson disease (PD)-related cognitive decline using diffusion tensor imaging (DTI) and investigate potential relationships between cognition and microstructural integrity of primary white matter tracts.
Methods: Movement Disorder Society criteria were used to classify 109 patients with PD as having normal cognition (PD-N, n = 63), mild cognitive impairment (PD-MCI, n = 28), or dementia (PD-D, n = 18), and were compared with 32 matched controls. DTI indices were assessed across groups using tract-based spatial statistics, and multiple regression was used to assess association with cognitive and clinical measures.
Results: Relative to controls, PD-N showed some increased mean diffusivity (MD) in corpus callosum, but no significantly decreased fractional anisotropy (FA). Decreased FA and increased MD were identified in PD-MCI and PD-D relative to controls. Only small areas of difference were observed in PD-MCI and PD-D compared with PD-N, while DTI metrics did not differ significantly between PD-MCI and PD-D. Executive function, attention, memory, and a composite measure of global cognition were associated with MD, primarily in anterior white matter tracts; only attention was associated with FA. These differences were independent of white matter hyperintensity load, which was also associated with cognition in PD.
Conclusions: PD is associated with spatially restricted loss of microstructural white matter integrity in patients with relatively normal cognition, and these alterations increase with cognitive dysfunction. Functional impairment in executive function, attention, and learning and memory appears associated with microstructural changes, suggesting that tract-based spatial statistics provides an early marker for clinically relevant cognitive impairment in PD.
GLOSSARY
- DTI=
- diffusion tensor imaging;
- FA=
- fractional anisotropy;
- LED=
- levodopa equivalent dose;
- MCI=
- mild cognitive impairment;
- MD=
- mean diffusivity;
- MDS=
- Movement Disorder Society;
- PD=
- Parkinson disease;
- PD-D=
- Parkinson disease–dementia;
- PD-N=
- Parkinson disease–normal cognition;
- TBSS=
- tract-based spatial statistics;
- TE=
- echo time;
- TR=
- repetition time;
- UPDRS=
- Unified Parkinson's Disease Rating Scale;
- WMH=
- white matter hyperintensity
Footnotes
Go to Neurology.org for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.
Supplemental data at www.neurology.org
- Received August 7, 2012.
- Accepted in final form January 29, 2013.
- © 2013 American Academy of Neurology
AAN Members
We have changed the login procedure to improve access between AAN.com and the Neurology journals. If you are experiencing issues, please log out of AAN.com and clear history and cookies. (For instructions by browser, please click the instruction pages below). After clearing, choose preferred Journal and select login for AAN Members. You will be redirected to a login page where you can log in with your AAN ID number and password. When you are returned to the Journal, your name should appear at the top right of the page.
AAN Non-Member Subscribers
Purchase access
For assistance, please contact:
AAN Members (800) 879-1960 or (612) 928-6000 (International)
Non-AAN Member subscribers (800) 638-3030 or (301) 223-2300 option 3, select 1 (international)
Sign Up
Information on how to subscribe to Neurology and Neurology: Clinical Practice can be found here
Purchase
Individual access to articles is available through the Add to Cart option on the article page. Access for 1 day (from the computer you are currently using) is US$ 39.00. Pay-per-view content is for the use of the payee only, and content may not be further distributed by print or electronic means. The payee may view, download, and/or print the article for his/her personal, scholarly, research, and educational use. Distributing copies (electronic or otherwise) of the article is not allowed.
Letters: Rapid online correspondence
REQUIREMENTS
If you are uploading a letter concerning an article:
You must have updated your disclosures within six months: http://submit.neurology.org
Your co-authors must send a completed Publishing Agreement Form to Neurology Staff (not necessary for the lead/corresponding author as the form below will suffice) before you upload your comment.
If you are responding to a comment that was written about an article you originally authored:
You (and co-authors) do not need to fill out forms or check disclosures as author forms are still valid
and apply to letter.
Submission specifications:
- Submissions must be < 200 words with < 5 references. Reference 1 must be the article on which you are commenting.
- Submissions should not have more than 5 authors. (Exception: original author replies can include all original authors of the article)
- Submit only on articles published within 6 months of issue date.
- Do not be redundant. Read any comments already posted on the article prior to submission.
- Submitted comments are subject to editing and editor review prior to posting.
You May Also be Interested in
Dr. Jeffrey Allen and Dr. Nicholas Purcell
► Watch
Topics Discussed
Alert Me
Recommended articles
-
Article
White matter abnormalities in the corpus callosum with cognitive impairment in Parkinson diseaseIan O. Bledsoe, Glenn T. Stebbins, Doug Merkitch et al.Neurology, November 14, 2018 -
Article
Effects of vascular risk factors and APOE ε4 on white matter integrity and cognitive declineRui Wang, Laura Fratiglioni, Erika J. Laukka et al.Neurology, February 11, 2015 -
Article
Physical activity is related to the structural integrity of cerebral white matterRob A.R. Gons, Anil M. Tuladhar, Karlijn F. de Laat et al.Neurology, August 06, 2013 -
Article
Integrity of normal-appearing white matter and functional outcomes after acute ischemic strokeMark R. Etherton, Ona Wu, Pedro Cougo et al.Neurology, April 05, 2017