Cerebral atrophy in mild cognitive impairment and Alzheimer disease
Rates and acceleration
Citation Manager Formats
Make Comment
See Comments

Abstract
Objective: To quantify the regional and global cerebral atrophy rates and assess acceleration rates in healthy controls, subjects with mild cognitive impairment (MCI), and subjects with mild Alzheimer disease (AD).
Methods: Using 0-, 6-, 12-, 18-, 24-, and 36-month MRI scans of controls and subjects with MCI and AD from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, we calculated volume change of whole brain, hippocampus, and ventricles between all pairs of scans using the boundary shift integral.
Results: We found no evidence of acceleration in whole-brain atrophy rates in any group. There was evidence that hippocampal atrophy rates in MCI subjects accelerate by 0.22%/year2 on average (p = 0.037). There was evidence of acceleration in rates of ventricular enlargement in subjects with MCI (p = 0.001) and AD (p < 0.001), with rates estimated to increase by 0.27 mL/year2 (95% confidence interval 0.12, 0.43) and 0.88 mL/year2 (95% confidence interval 0.47, 1.29), respectively. A post hoc analysis suggested that the acceleration of hippocampal loss in MCI subjects was mainly driven by the MCI subjects that were observed to progress to clinical AD within 3 years of baseline, with this group showing hippocampal atrophy rate acceleration of 0.50%/year2 (p = 0.003).
Conclusions: The small acceleration rates suggest a long period of transition to the pathologic losses seen in clinical AD. The acceleration in hippocampal atrophy rates in MCI subjects in the ADNI seems to be driven by those MCI subjects who concurrently progressed to a clinical diagnosis of AD.
Glossary
- AD=
- Alzheimer disease;
- ADNI=
- Alzheimer's Disease Neuroimaging Initiative;
- CI=
- confidence interval;
- MCI=
- mild cognitive impairment;
- MCI-P=
- mild cognitive impairment–progressed;
- MCI-S=
- mild cognitive impairment–static;
- MMSE=
- Mini-Mental State Examination;
- KN-BSI=
- robust boundary shift integral
Footnotes
Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found on the Neurology® Web site at www.neurology.org.
Go to Neurology.org for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.
Supplemental data at www.neurology.org
- Received July 24, 2012.
- Accepted in final form October 10, 2012.
- © 2013 American Academy of Neurology
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Disputes & Debates: Rapid online correspondence
NOTE: All authors' disclosures must be entered and current in our database before comments can be posted. Enter and update disclosures at http://submit.neurology.org. Exception: replies to comments concerning an article you originally authored do not require updated disclosures.
- Stay timely. Submit only on articles published within 6 months of issue date.
- Do not be redundant. Read any comments already posted on the article prior to submission.
- 200 words maximum.
- 5 references maximum. Reference 1 must be the article on which you are commenting.
- 5 authors maximum. Exception: replies can include all original authors of the article.
- Submitted comments are subject to editing and editor review prior to posting.