Skip to main content
Advertisement
  • Neurology.org
  • Journals
    • Neurology
    • Clinical Practice
    • Education
    • Genetics
    • Neuroimmunology & Neuroinflammation
  • Online Sections
    • Neurology Video Journal Club
    • Diversity, Equity, & Inclusion (DEI)
    • Innovations in Care Delivery
    • Practice Buzz
    • Practice Current
    • Residents & Fellows
    • Without Borders
  • Collections
    • COVID-19
    • Disputes & Debates
    • Health Disparities
    • Infographics
    • Neurology Future Forecasting Series
    • Null Hypothesis
    • Patient Pages
    • Topics A-Z
    • Translations
  • Podcast
  • CME
  • About
    • About the Journals
    • Contact Us
    • Editorial Board
  • Authors
    • Submit New Manuscript
    • Submit Revised Manuscript
    • Author Center

Advanced Search

Main menu

  • Neurology.org
  • Journals
    • Neurology
    • Clinical Practice
    • Education
    • Genetics
    • Neuroimmunology & Neuroinflammation
  • Online Sections
    • Neurology Video Journal Club
    • Diversity, Equity, & Inclusion (DEI)
    • Innovations in Care Delivery
    • Practice Buzz
    • Practice Current
    • Residents & Fellows
    • Without Borders
  • Collections
    • COVID-19
    • Disputes & Debates
    • Health Disparities
    • Infographics
    • Neurology Future Forecasting Series
    • Null Hypothesis
    • Patient Pages
    • Topics A-Z
    • Translations
  • Podcast
  • CME
  • About
    • About the Journals
    • Contact Us
    • Editorial Board
  • Authors
    • Submit New Manuscript
    • Submit Revised Manuscript
    • Author Center
  • Home
  • Latest Articles
  • Current Issue
  • Past Issues
  • Neurology Video Journal Club
  • Residents & Fellows

User menu

  • Subscribe
  • My Alerts
  • Log in

Search

  • Advanced search
Neurology
Home
The most widely read and highly cited peer-reviewed neurology journal
  • Subscribe
  • My Alerts
  • Log in
Site Logo
  • Home
  • Latest Articles
  • Current Issue
  • Past Issues
  • Neurology Video Journal Club
  • Residents & Fellows

Share

August 02, 2016; 87 (5) Article

Polygenic risk of Alzheimer disease is associated with early- and late-life processes

Elizabeth C. Mormino, Reisa A. Sperling, Avram J. Holmes, Randy L. Buckner, Philip L. De Jager, Jordan W. Smoller, Mert R. Sabuncu, For the Alzheimer's Disease Neuroimaging Initiative
First published July 6, 2016, DOI: https://doi.org/10.1212/WNL.0000000000002922
Elizabeth C. Mormino
From the Departments of Neurology (E.C.M., R.A.S.) and Radiology (R.A.S.), Massachusetts General Hospital, Harvard Medical School, Charlestown; Center for Alzheimer Research and Treatment, Department of Neurology (R.A.S.), and Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry (P.L.D.), Brigham and Women's Hospital, Harvard Medical School (P.L.D.), Boston, MA; Department of Psychology (A.J.H.), Yale University, New Haven, CT; Department of Psychiatry (A.J.H.), Massachusetts General Hospital, Harvard Medical School, Boston; Athinoula A. Martinos Center for Biomedical Imaging (A.J.H.) and Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research (J.W.S.), Massachusetts General Hospital, Boston; Department of Psychology and Center for Brain Science (R.L.B.), Harvard University, Cambridge; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology (R.L.B., M.R.S.), Massachusetts General Hospital, Charlestown; Program in Medical and Population Genetics (P.L.D.), Broad Institute; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard (J.W.S.); and Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Reisa A. Sperling
From the Departments of Neurology (E.C.M., R.A.S.) and Radiology (R.A.S.), Massachusetts General Hospital, Harvard Medical School, Charlestown; Center for Alzheimer Research and Treatment, Department of Neurology (R.A.S.), and Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry (P.L.D.), Brigham and Women's Hospital, Harvard Medical School (P.L.D.), Boston, MA; Department of Psychology (A.J.H.), Yale University, New Haven, CT; Department of Psychiatry (A.J.H.), Massachusetts General Hospital, Harvard Medical School, Boston; Athinoula A. Martinos Center for Biomedical Imaging (A.J.H.) and Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research (J.W.S.), Massachusetts General Hospital, Boston; Department of Psychology and Center for Brain Science (R.L.B.), Harvard University, Cambridge; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology (R.L.B., M.R.S.), Massachusetts General Hospital, Charlestown; Program in Medical and Population Genetics (P.L.D.), Broad Institute; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard (J.W.S.); and Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Avram J. Holmes
From the Departments of Neurology (E.C.M., R.A.S.) and Radiology (R.A.S.), Massachusetts General Hospital, Harvard Medical School, Charlestown; Center for Alzheimer Research and Treatment, Department of Neurology (R.A.S.), and Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry (P.L.D.), Brigham and Women's Hospital, Harvard Medical School (P.L.D.), Boston, MA; Department of Psychology (A.J.H.), Yale University, New Haven, CT; Department of Psychiatry (A.J.H.), Massachusetts General Hospital, Harvard Medical School, Boston; Athinoula A. Martinos Center for Biomedical Imaging (A.J.H.) and Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research (J.W.S.), Massachusetts General Hospital, Boston; Department of Psychology and Center for Brain Science (R.L.B.), Harvard University, Cambridge; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology (R.L.B., M.R.S.), Massachusetts General Hospital, Charlestown; Program in Medical and Population Genetics (P.L.D.), Broad Institute; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard (J.W.S.); and Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Randy L. Buckner
From the Departments of Neurology (E.C.M., R.A.S.) and Radiology (R.A.S.), Massachusetts General Hospital, Harvard Medical School, Charlestown; Center for Alzheimer Research and Treatment, Department of Neurology (R.A.S.), and Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry (P.L.D.), Brigham and Women's Hospital, Harvard Medical School (P.L.D.), Boston, MA; Department of Psychology (A.J.H.), Yale University, New Haven, CT; Department of Psychiatry (A.J.H.), Massachusetts General Hospital, Harvard Medical School, Boston; Athinoula A. Martinos Center for Biomedical Imaging (A.J.H.) and Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research (J.W.S.), Massachusetts General Hospital, Boston; Department of Psychology and Center for Brain Science (R.L.B.), Harvard University, Cambridge; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology (R.L.B., M.R.S.), Massachusetts General Hospital, Charlestown; Program in Medical and Population Genetics (P.L.D.), Broad Institute; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard (J.W.S.); and Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Philip L. De Jager
From the Departments of Neurology (E.C.M., R.A.S.) and Radiology (R.A.S.), Massachusetts General Hospital, Harvard Medical School, Charlestown; Center for Alzheimer Research and Treatment, Department of Neurology (R.A.S.), and Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry (P.L.D.), Brigham and Women's Hospital, Harvard Medical School (P.L.D.), Boston, MA; Department of Psychology (A.J.H.), Yale University, New Haven, CT; Department of Psychiatry (A.J.H.), Massachusetts General Hospital, Harvard Medical School, Boston; Athinoula A. Martinos Center for Biomedical Imaging (A.J.H.) and Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research (J.W.S.), Massachusetts General Hospital, Boston; Department of Psychology and Center for Brain Science (R.L.B.), Harvard University, Cambridge; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology (R.L.B., M.R.S.), Massachusetts General Hospital, Charlestown; Program in Medical and Population Genetics (P.L.D.), Broad Institute; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard (J.W.S.); and Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jordan W. Smoller
From the Departments of Neurology (E.C.M., R.A.S.) and Radiology (R.A.S.), Massachusetts General Hospital, Harvard Medical School, Charlestown; Center for Alzheimer Research and Treatment, Department of Neurology (R.A.S.), and Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry (P.L.D.), Brigham and Women's Hospital, Harvard Medical School (P.L.D.), Boston, MA; Department of Psychology (A.J.H.), Yale University, New Haven, CT; Department of Psychiatry (A.J.H.), Massachusetts General Hospital, Harvard Medical School, Boston; Athinoula A. Martinos Center for Biomedical Imaging (A.J.H.) and Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research (J.W.S.), Massachusetts General Hospital, Boston; Department of Psychology and Center for Brain Science (R.L.B.), Harvard University, Cambridge; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology (R.L.B., M.R.S.), Massachusetts General Hospital, Charlestown; Program in Medical and Population Genetics (P.L.D.), Broad Institute; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard (J.W.S.); and Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mert R. Sabuncu
From the Departments of Neurology (E.C.M., R.A.S.) and Radiology (R.A.S.), Massachusetts General Hospital, Harvard Medical School, Charlestown; Center for Alzheimer Research and Treatment, Department of Neurology (R.A.S.), and Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry (P.L.D.), Brigham and Women's Hospital, Harvard Medical School (P.L.D.), Boston, MA; Department of Psychology (A.J.H.), Yale University, New Haven, CT; Department of Psychiatry (A.J.H.), Massachusetts General Hospital, Harvard Medical School, Boston; Athinoula A. Martinos Center for Biomedical Imaging (A.J.H.) and Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research (J.W.S.), Massachusetts General Hospital, Boston; Department of Psychology and Center for Brain Science (R.L.B.), Harvard University, Cambridge; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology (R.L.B., M.R.S.), Massachusetts General Hospital, Charlestown; Program in Medical and Population Genetics (P.L.D.), Broad Institute; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard (J.W.S.); and Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
From the Departments of Neurology (E.C.M., R.A.S.) and Radiology (R.A.S.), Massachusetts General Hospital, Harvard Medical School, Charlestown; Center for Alzheimer Research and Treatment, Department of Neurology (R.A.S.), and Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry (P.L.D.), Brigham and Women's Hospital, Harvard Medical School (P.L.D.), Boston, MA; Department of Psychology (A.J.H.), Yale University, New Haven, CT; Department of Psychiatry (A.J.H.), Massachusetts General Hospital, Harvard Medical School, Boston; Athinoula A. Martinos Center for Biomedical Imaging (A.J.H.) and Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research (J.W.S.), Massachusetts General Hospital, Boston; Department of Psychology and Center for Brain Science (R.L.B.), Harvard University, Cambridge; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology (R.L.B., M.R.S.), Massachusetts General Hospital, Charlestown; Program in Medical and Population Genetics (P.L.D.), Broad Institute; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard (J.W.S.); and Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge.
Full PDF
Citation
Polygenic risk of Alzheimer disease is associated with early- and late-life processes
Elizabeth C. Mormino, Reisa A. Sperling, Avram J. Holmes, Randy L. Buckner, Philip L. De Jager, Jordan W. Smoller, Mert R. Sabuncu, For the Alzheimer's Disease Neuroimaging Initiative
Neurology Aug 2016, 87 (5) 481-488; DOI: 10.1212/WNL.0000000000002922

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Permissions

Make Comment

See Comments

Downloads
727

Share

  • Article
  • Figures & Data
  • Info & Disclosures
Loading

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.

Abstract

Objective: To examine associations between aggregate genetic risk and Alzheimer disease (AD) markers in stages preceding the clinical symptoms of dementia using data from 2 large observational cohort studies.

Methods: We computed polygenic risk scores (PGRS) using summary statistics from the International Genomics of Alzheimer's Project genome-wide association study of AD. Associations between PGRS and AD markers (cognitive decline, clinical progression, hippocampus volume, and β-amyloid) were assessed within older participants with dementia. Associations between PGRS and hippocampus volume were additionally examined within healthy younger participants (age 18–35 years).

Results: Within participants without dementia, elevated PGRS was associated with worse memory (p = 0.002) and smaller hippocampus (p = 0.002) at baseline, as well as greater longitudinal cognitive decline (memory: p = 0.0005, executive function: p = 0.01) and clinical progression (p < 0.00001). High PGRS was associated with AD-like levels of β-amyloid burden as measured with florbetapir PET (p = 0.03) but did not reach statistical significance for CSF β-amyloid (p = 0.11). Within the younger group, higher PGRS was associated with smaller hippocampus volume (p = 0.05). This pattern was evident when examining a PGRS that included many loci below the genome-wide association study (GWAS)–level significance threshold (16,123 single nucleotide polymorphisms), but not when PGRS was restricted to GWAS-level significant loci (18 single nucleotide polymorphisms).

Conclusions: Effects related to common genetic risk loci distributed throughout the genome are detectable among individuals without dementia. The influence of this genetic risk may begin in early life and make an individual more susceptible to cognitive impairment in late life. Future refinement of polygenic risk scores may help identify individuals at risk for AD dementia.

GLOSSARY

Aβ=
β-amyloid;
AD=
Alzheimer disease;
ADNI=
Alzheimer's Disease Neuroimaging Initiative;
CDR=
Clinical Dementia Rating;
CN=
clinically normal;
GSP=
Brain Genomics Superstruct Project;
GWAS=
genome-wide association study;
HV=
hippocampus volume;
IGAP=
International Genomics of Alzheimer's Project;
LD=
linkage disequilibrium;
MCI=
mild cognitive impairment;
MMSE=
Mini-Mental State Examination;
PGRS=
polygenic risk score;
SNP=
single nucleotide polymorphism

Footnotes

  • Coinvestigators are listed at Neurology.org.

  • Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

  • Go to Neurology.org for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.

  • Supplemental data at Neurology.org

  • Received December 24, 2015.
  • Accepted in final form April 22, 2016.
  • © 2016 American Academy of Neurology
View Full Text

AAN Members

We have changed the login procedure to improve access between AAN.com and the Neurology journals. If you are experiencing issues, please log out of AAN.com and clear history and cookies. (For instructions by browser, please click the instruction pages below). After clearing, choose preferred Journal and select login for AAN Members. You will be redirected to a login page where you can log in with your AAN ID number and password. When you are returned to the Journal, your name should appear at the top right of the page.

Google Safari Microsoft Edge Firefox

Click here to login

AAN Non-Member Subscribers

Click here to login

Purchase access

For assistance, please contact:
AAN Members (800) 879-1960 or (612) 928-6000 (International)
Non-AAN Member subscribers (800) 638-3030 or (301) 223-2300 option 3, select 1 (international)

Sign Up
Information on how to subscribe to Neurology and Neurology: Clinical Practice can be found here 

Purchase
Individual access to articles is available through the Add to Cart option on the article page.  Access for 1 day (from the computer you are currently using) is US$ 39.00.  Pay-per-view content is for the use of the payee only, and content may not be further distributed by print or electronic means.  The payee may view, download, and/or print the article for his/her personal, scholarly, research, and educational use.  Distributing copies (electronic or otherwise) of the article is not allowed.

Letters: Rapid online correspondence

No comments have been published for this article.
Comment

REQUIREMENTS

If you are uploading a letter concerning an article:
You must have updated your disclosures within six months: http://submit.neurology.org

Your co-authors must send a completed Publishing Agreement Form to Neurology Staff (not necessary for the lead/corresponding author as the form below will suffice) before you upload your comment.

If you are responding to a comment that was written about an article you originally authored:
You (and co-authors) do not need to fill out forms or check disclosures as author forms are still valid
and apply to letter.

Submission specifications:

  • Submissions must be < 200 words with < 5 references. Reference 1 must be the article on which you are commenting.
  • Submissions should not have more than 5 authors. (Exception: original author replies can include all original authors of the article)
  • Submit only on articles published within 6 months of issue date.
  • Do not be redundant. Read any comments already posted on the article prior to submission.
  • Submitted comments are subject to editing and editor review prior to posting.

More guidelines and information on Disputes & Debates

Compose Comment

More information about text formats

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
Author Information
NOTE: The first author must also be the corresponding author of the comment.
First or given name, e.g. 'Peter'.
Your last, or family, name, e.g. 'MacMoody'.
Your email address, e.g. higgs-boson@gmail.com
Your role and/or occupation, e.g. 'Orthopedic Surgeon'.
Your organization or institution (if applicable), e.g. 'Royal Free Hospital'.
Publishing Agreement
NOTE: All authors, besides the first/corresponding author, must complete a separate Publishing Agreement Form and provide via email to the editorial office before comments can be posted.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.

Vertical Tabs

You May Also be Interested in

Back to top
  • Article
    • Abstract
    • GLOSSARY
    • METHODS
    • RESULTS
    • DISCUSSION
    • AUTHOR CONTRIBUTIONS
    • STUDY FUNDING
    • DISCLOSURE
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Disclosures
Advertisement

SARS-CoV-2 Vaccination Safety in Guillain-Barré Syndrome, Chronic Inflammatory Demyelinating Polyneuropathy, and Multifocal Motor Neuropathy

Dr. Jeffrey Allen and Dr. Nicholas Purcell

► Watch

Topics Discussed

  • Alzheimer's disease
  • MRI
  • PET
  • Cognitive aging
  • MCI (mild cognitive impairment)

Alert Me

  • Alert me when eletters are published

Recommended articles

  • Article
    Dissociable influences of APOE ε4 and polygenic risk of AD dementia on amyloid and cognition
    Tian Ge, Mert R. Sabuncu, Jordan W. Smoller et al.
    Neurology, March 28, 2018
  • Article
    Polygenic risk scores in familial Alzheimer disease
    Giuseppe Tosto, Thomas D. Bird, Debby Tsuang et al.
    Neurology, February 17, 2017
  • Article
    Genetic risk for Alzheimer disease predicts hippocampal volume through the human lifespan
    Kristine B. Walhovd, Anders M. Fjell, Øystein Sørensen et al.
    Neurology: Genetics, September 08, 2020
  • Article
    Cardiorespiratory fitness alters the influence of a polygenic risk score on biomarkers of AD
    Stephanie A. Schultz, Elizabeth A. Boots, Burcu F. Darst et al.
    Neurology, March 24, 2017
Neurology: 100 (12)

Articles

  • Ahead of Print
  • Current Issue
  • Past Issues
  • Popular Articles
  • Translations

About

  • About the Journals
  • Ethics Policies
  • Editors & Editorial Board
  • Contact Us
  • Advertise

Submit

  • Author Center
  • Submit a Manuscript
  • Information for Reviewers
  • AAN Guidelines
  • Permissions

Subscribers

  • Subscribe
  • Activate a Subscription
  • Sign up for eAlerts
  • RSS Feed
Site Logo
  • Visit neurology Template on Facebook
  • Follow neurology Template on Twitter
  • Visit Neurology on YouTube
  • Neurology
  • Neurology: Clinical Practice
  • Neurology: Education
  • Neurology: Genetics
  • Neurology: Neuroimmunology & Neuroinflammation
  • AAN.com
  • AANnews
  • Continuum
  • Brain & Life
  • Neurology Today

Wolters Kluwer Logo

Neurology | Print ISSN:0028-3878
Online ISSN:1526-632X

© 2023 American Academy of Neurology

  • Privacy Policy
  • Feedback
  • Advertise