Increased total sodium concentration in gray matter better explains cognition than atrophy in MS
Citation Manager Formats
Make Comment
See Comments

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.
Abstract
Objective: To investigate whether brain total sodium accumulation assessed by 23Na MRI is associated with cognitive deficit in relapsing-remitting multiple sclerosis (RRMS).
Methods: Eighty-nine participants were enrolled in the study (58 patients with RRMS with a disease duration ≤10 years and 31 matched healthy controls). Patients were classified as cognitively impaired if they failed at least 2 tasks on the Brief Repeatable Battery. MRI was performed at 3T using 23Na MRI to obtain total sodium concentration (TSC) in the different brain compartments (lesions, normal-appearing white matter [NAWM], gray matter [GM]) and 1H- magnetization-prepared rapid gradient echo to assess GM atrophy (GM fraction).
Results: The mean disease duration was 3.1 years and the median Expanded Disability Status Scale score was 1 (range 0–4.5). Thirty-seven patients were classified as cognitively preserved and 21 as cognitively impaired. TSC was increased in GM and NAWM in cognitively impaired patients compared to cognitively preserved patients and healthy controls. Voxel-wise analysis demonstrated that sodium accumulation was mainly located in the neocortex in cognitively impaired patients. Regression analysis evidenced than the 2 best independent predictors of cognitive impairment were GM TSC and age. Receiver operating characteristic analyses demonstrated that sensitivity and specificity of the GM TSC to classify patients according to their cognitive status were 76% and 71%, respectively.
Conclusions: This study provides 2 main findings. (1) In RRMS, total sodium accumulation in the GM is better associated with cognitive impairment than GM atrophy; and (2) total sodium accumulation in patients with cognitive impairment is mainly located in the neocortex.
GLOSSARY
- ANOVA=
- analysis of variance;
- AUC=
- area under the receiver operating characteristic curve;
- BA=
- Brodmann area;
- CI=
- cognitively impaired;
- CII=
- Cognitive Impairment Index;
- CP=
- cognitively preserved;
- EDSS=
- Expanded Disability Status Scale;
- FDR=
- false discovery rate;
- FOV=
- field of view;
- GM=
- gray matter;
- GMF=
- gray matter fraction;
- HC=
- healthy controls;
- MPRAGE=
- magnetization-prepared rapid gradient echo;
- MR=
- magnetic resonance;
- MS=
- multiple sclerosis;
- NAWM=
- normal-appearing white matter;
- RRMS=
- relapsing-remitting multiple sclerosis;
- TE=
- echo time;
- TR=
- repetition time;
- TSC=
- total sodium concentration;
- WM=
- white matter;
- WMF=
- white matter fraction
Footnotes
Go to Neurology.org for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.
Supplemental data at Neurology.org
- Received April 4, 2016.
- Accepted in final form October 6, 2016.
- © 2016 American Academy of Neurology
AAN Members
We have changed the login procedure to improve access between AAN.com and the Neurology journals. If you are experiencing issues, please log out of AAN.com and clear history and cookies. (For instructions by browser, please click the instruction pages below). After clearing, choose preferred Journal and select login for AAN Members. You will be redirected to a login page where you can log in with your AAN ID number and password. When you are returned to the Journal, your name should appear at the top right of the page.
AAN Non-Member Subscribers
Purchase access
For assistance, please contact:
AAN Members (800) 879-1960 or (612) 928-6000 (International)
Non-AAN Member subscribers (800) 638-3030 or (301) 223-2300 option 3, select 1 (international)
Sign Up
Information on how to subscribe to Neurology and Neurology: Clinical Practice can be found here
Purchase
Individual access to articles is available through the Add to Cart option on the article page. Access for 1 day (from the computer you are currently using) is US$ 39.00. Pay-per-view content is for the use of the payee only, and content may not be further distributed by print or electronic means. The payee may view, download, and/or print the article for his/her personal, scholarly, research, and educational use. Distributing copies (electronic or otherwise) of the article is not allowed.
Letters: Rapid online correspondence
REQUIREMENTS
You must ensure that your Disclosures have been updated within the previous six months. Please go to our Submission Site to add or update your Disclosure information.
Your co-authors must send a completed Publishing Agreement Form to Neurology Staff (not necessary for the lead/corresponding author as the form below will suffice) before you upload your comment.
If you are responding to a comment that was written about an article you originally authored:
You (and co-authors) do not need to fill out forms or check disclosures as author forms are still valid
and apply to letter.
Submission specifications:
- Submissions must be < 200 words with < 5 references. Reference 1 must be the article on which you are commenting.
- Submissions should not have more than 5 authors. (Exception: original author replies can include all original authors of the article)
- Submit only on articles published within 6 months of issue date.
- Do not be redundant. Read any comments already posted on the article prior to submission.
- Submitted comments are subject to editing and editor review prior to posting.
You May Also be Interested in
More Online
Hastening the Diagnosis of Amyotrophic Lateral Sclerosis
Dr. Brian Callaghan and Dr. Kellen Quigg
► Watch
Topics Discussed
Alert Me
Recommended articles
-
Article
Cortical atrophy accelerates as cognitive decline worsens in multiple sclerosisAnand J.C. Eijlers, Iris Dekker, Martijn D. Steenwijk et al.Neurology, September 04, 2019 -
Articles
Early imaging predicts later cognitive impairment in primary progressive multiple sclerosisS. Penny, Z. Khaleeli, L. Cipolotti et al.Neurology, February 15, 2010 -
Article
Posterior brain damage and cognitive impairment in pediatric multiple sclerosisMaria A. Rocca, Martina Absinta, Maria Pia Amato et al.Neurology, March 19, 2014 -
Articles
Gray and white matter volume changes in early RRMSA 2-year longitudinal studyM. Tiberio, D. T. Chard, D. R. Altmann et al.Neurology, March 21, 2005