The evolving genetic risk for sporadic ALS
Citation Manager Formats
Make Comment
See Comments

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.
Abstract
Objective: To estimate the genetic risk conferred by known amyotrophic lateral sclerosis (ALS)–associated genes to the pathogenesis of sporadic ALS (SALS) using variant allele frequencies combined with predicted variant pathogenicity.
Methods: Whole exome sequencing and repeat expansion PCR of C9orf72 and ATXN2 were performed on 87 patients of European ancestry with SALS seen at the University of Utah. DNA variants that change the protein coding sequence of 31 ALS-associated genes were annotated to determine which were rare and deleterious as predicted by MetaSVM. The percentage of patients with SALS with a rare and deleterious variant or repeat expansion in an ALS-associated gene was calculated. An odds ratio analysis was performed comparing the burden of ALS-associated genes in patients with SALS vs 324 normal controls.
Results: Nineteen rare nonsynonymous variants in an ALS-associated gene, 2 of which were found in 2 different individuals, were identified in 21 patients with SALS. Further, 5 deleterious C9orf72 and 2 ATXN2 repeat expansions were identified. A total of 17.2% of patients with SALS had a rare and deleterious variant or repeat expansion in an ALS-associated gene. The genetic burden of ALS-associated genes in patients with SALS as predicted by MetaSVM was significantly higher than in normal controls.
Conclusions: Previous analyses have identified SALS-predisposing variants only in terms of their rarity in normal control populations. By incorporating variant pathogenicity as well as variant frequency, we demonstrated that the genetic risk contributed by these genes for SALS is substantially lower than previous estimates.
GLOSSARY
- ALS=
- amyotrophic lateral sclerosis;
- ALSoD=
- Amyotrophic Lateral Sclerosis Online Database;
- dbNSFP=
- database for nonsynonymous single nucleotide polymorphism functional predictions;
- dbSNP=
- Single Nucleotide Polymorphism database;
- ExAC=
- Exome Aggregation Consortium;
- FALS=
- familial amyotrophic lateral sclerosis;
- FTD=
- frontotemporal dementia;
- HGMD=
- Human Gene Mutation Database;
- MAF=
- minor allele frequency;
- OR=
- odds ratio;
- PCA=
- principal components analysis;
- SALS=
- sporadic amyotrophic lateral sclerosis;
- SNV=
- single nucleotide variant;
- SSC=
- Simons Simplex Collection;
- VQSR=
- variant quality score recalibration
Footnotes
↵* These authors contributed equally to this work.
↵† Co–senior authors.
Go to Neurology.org for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.
Supplemental data at Neurology.org
Editorial, page 220
- Received December 8, 2016.
- Accepted in final form March 17, 2017.
- © 2017 American Academy of Neurology
AAN Members
We have changed the login procedure to improve access between AAN.com and the Neurology journals. If you are experiencing issues, please log out of AAN.com and clear history and cookies. (For instructions by browser, please click the instruction pages below). After clearing, choose preferred Journal and select login for AAN Members. You will be redirected to a login page where you can log in with your AAN ID number and password. When you are returned to the Journal, your name should appear at the top right of the page.
AAN Non-Member Subscribers
Purchase access
For assistance, please contact:
AAN Members (800) 879-1960 or (612) 928-6000 (International)
Non-AAN Member subscribers (800) 638-3030 or (301) 223-2300 option 3, select 1 (international)
Sign Up
Information on how to subscribe to Neurology and Neurology: Clinical Practice can be found here
Purchase
Individual access to articles is available through the Add to Cart option on the article page. Access for 1 day (from the computer you are currently using) is US$ 39.00. Pay-per-view content is for the use of the payee only, and content may not be further distributed by print or electronic means. The payee may view, download, and/or print the article for his/her personal, scholarly, research, and educational use. Distributing copies (electronic or otherwise) of the article is not allowed.
Letters: Rapid online correspondence
REQUIREMENTS
You must ensure that your Disclosures have been updated within the previous six months. Please go to our Submission Site to add or update your Disclosure information.
Your co-authors must send a completed Publishing Agreement Form to Neurology Staff (not necessary for the lead/corresponding author as the form below will suffice) before you upload your comment.
If you are responding to a comment that was written about an article you originally authored:
You (and co-authors) do not need to fill out forms or check disclosures as author forms are still valid
and apply to letter.
Submission specifications:
- Submissions must be < 200 words with < 5 references. Reference 1 must be the article on which you are commenting.
- Submissions should not have more than 5 authors. (Exception: original author replies can include all original authors of the article)
- Submit only on articles published within 6 months of issue date.
- Do not be redundant. Read any comments already posted on the article prior to submission.
- Submitted comments are subject to editing and editor review prior to posting.
You May Also be Interested in
Dr. Nicole Sur and Dr. Mausaminben Hathidara
► Watch
Related Articles
Topics Discussed
Alert Me
Recommended articles
-
Views & Reviews
C9orf72 and the Care of the Patient With ALS or FTDProgress and Recommendations After 10 YearsJennifer Roggenbuck et al.Neurology: Genetics, December 21, 2020 -
Articles
Hexanucleotide repeat expansions in C9ORF72 in the spectrum of motor neuron diseasesWouter van Rheenen, Marka van Blitterswijk, Mark H.B. Huisman et al.Neurology, July 25, 2012 -
Article
Amyotrophic Lateral Sclerosis Genetic Access ProgramPaving the Way for Genetic Characterization of ALS in the ClinicJennifer Roggenbuck, Kelly A. Rich, Leah Vicini et al.Neurology: Genetics, August 10, 2021 -
Article
Screening for novel hexanucleotide repeat expansions at ALS- and FTD-associated lociFang He, Julie M. Jones, Claudia Figueroa-Romero et al.Neurology Genetics, May 11, 2016