Predicting Survival in ALS Using Machine Learning Algorithms - a Preliminary Analysis (5374)
Citation Manager Formats
Make Comment
See Comments

Abstract
Objective: Use machine learning to better predict survival outcomes in amyotrophic lateral sclerosis (ALS).
Background: ALS is a progressive degenerative motor neuron disease. Due to the heterogeneity of the disease and difficulty predicting disease progression, interventional trials are lengthy and require large sample sizes to account for this. Tools that better stratify patients based on predicted survival or rate of disease progression would increase our ability to design shorter and cheaper clinical trials with a higher chance of success.
Design/Methods: In collaboration with CloudMedx Inc we analyzed the publicly available Pooled Resource Open-Access ALS Clinical Trials (PROACT) database to develop a machine learning framework to identify variables with high predictive power for survival stratification. Seven hundred twenty-six patients with complete records were divided into three buckets for survival and normalized to 242 patients per bucket. Running algorithms of k-nearest neighbors (kNN), support vector machine (SVM), random forest model, multilayer perceptron (MLP), and gradient boosting machine (GBM), this model was trained, validated, and tested with initial visit data and 90-day data to develop an outcome prediction algorithm.
Results: The CloudMedx ALS Framework (CMX-ALS) identified twenty highly predictive variables for survival. Data from 90-day and initial visit predicted survival outcomes with 82% and 70% accuracy respectively. This stratified patients into survival groups of less than 1 year, 1–2 years, and greater than 2 years. We identified seven new lab variables (bicarbonate, hematocrit, potassium, chloride, AST, glucose, and hemoglobin) and two medications (amitriptyline and baclofen) that were highly predictive of survival outcomes, and have not previously been mentioned in survival prediction models.
Conclusions: Patient stratification using machine learning methods will allow for smaller sample sizes in trial design. Additionally, we identified new variables and medications that were not previously considered for outcome efficacy.
Disclosure: Dr. Jacobsen has nothing to disclose. Yes - Amylyx Advisory Board
Letters: Rapid online correspondence
REQUIREMENTS
You must ensure that your Disclosures have been updated within the previous six months. Please go to our Submission Site to add or update your Disclosure information.
Your co-authors must send a completed Publishing Agreement Form to Neurology Staff (not necessary for the lead/corresponding author as the form below will suffice) before you upload your comment.
If you are responding to a comment that was written about an article you originally authored:
You (and co-authors) do not need to fill out forms or check disclosures as author forms are still valid
and apply to letter.
Submission specifications:
- Submissions must be < 200 words with < 5 references. Reference 1 must be the article on which you are commenting.
- Submissions should not have more than 5 authors. (Exception: original author replies can include all original authors of the article)
- Submit only on articles published within 6 months of issue date.
- Do not be redundant. Read any comments already posted on the article prior to submission.
- Submitted comments are subject to editing and editor review prior to posting.
You May Also be Interested in
Dr. Sevil Yaşar and Dr. Behnam Sabayan
► Watch
Related Articles
- No related articles found.