Skip to main content
Advertisement
  • Neurology.org
  • Journals
    • Neurology
    • Clinical Practice
    • Genetics
    • Neuroimmunology & Neuroinflammation
  • Specialty Sites
    • COVID-19
    • Practice Current
    • Practice Buzz
    • Without Borders
    • Equity, Diversity and Inclusion
    • Innovations in Care Delivery
  • Collections
    • Topics A-Z
    • Residents & Fellows
    • Infographics
    • Patient Pages
    • Null Hypothesis
    • Translations
  • Podcast
  • CME
  • About
    • About the Journals
    • Contact Us
    • Editorial Board
  • Authors
    • Submit a Manuscript
    • Author Center

Advanced Search

Main menu

  • Neurology.org
  • Journals
    • Neurology
    • Clinical Practice
    • Genetics
    • Neuroimmunology & Neuroinflammation
  • Specialty Sites
    • COVID-19
    • Practice Current
    • Practice Buzz
    • Without Borders
    • Equity, Diversity and Inclusion
    • Innovations in Care Delivery
  • Collections
    • Topics A-Z
    • Residents & Fellows
    • Infographics
    • Patient Pages
    • Null Hypothesis
    • Translations
  • Podcast
  • CME
  • About
    • About the Journals
    • Contact Us
    • Editorial Board
  • Authors
    • Submit a Manuscript
    • Author Center
  • Home
  • Latest Articles
  • Current Issue
  • Past Issues
  • Residents & Fellows

User menu

  • Subscribe
  • My Alerts
  • Log in

Search

  • Advanced search
Neurology
Home
The most widely read and highly cited peer-reviewed neurology journal
  • Subscribe
  • My Alerts
  • Log in
Site Logo
  • Home
  • Latest Articles
  • Current Issue
  • Past Issues
  • Residents & Fellows

Share

April 06, 2021; 96 (14) What's Happening

What's Happening in Neurology® Neuroimmunology & Neuroinflammation

First published April 5, 2021, DOI: https://doi.org/10.1212/WNL.0000000000011706
Full PDF
Citation
What's Happening in Neurology® Neuroimmunology & Neuroinflammation
Neurology Apr 2021, 96 (14) 663; DOI: 10.1212/WNL.0000000000011706

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Permissions

Make Comment

See Comments

Downloads
2

Share

  • Article
  • Info & Disclosures
Loading

Articles appearing in the November 2020 issue

Immune Profiling of Plasma-derived Extracellular Vesicles Identifies Parkinson Disease

Objective

To develop a diagnostic model based on plasma-derived extracellular vesicle (EV) subpopulations in Parkinson disease (PD) and atypical parkinsonism (AP), we applied an innovative flow cytometric multiplex bead-based platform.

Methods

Plasma-derived EVs were isolated from PD, matched healthy controls, multiple system atrophy (MSA), and AP with tauopathies (AP-Tau). The expression levels of 37 EV surface markers were measured by flow cytometry and correlated with clinical scales. A diagnostic model based on EV surface markers expression was built via supervised machine learning algorithms and validated in an external cohort.

Results

Distinctive pools of EV surface markers related to inflammatory and immune cells stratified patients according to the clinical diagnosis. PD and MSA displayed a greater pool of overexpressed immune markers, suggesting a different immune dysregulation in PD and MSA vs AP-Tau. The receiver operating characteristic curve analysis of a compound EV marker showed optimal diagnostic performance for PD (area under the curve [AUC] 0.908; sensitivity 96.3%, specificity 78.9%) and MSA (AUC 0.974; sensitivity 100%, specificity 94.7%) and good accuracy for AP-Tau (AUC 0.718; sensitivity 77.8%, specificity 89.5%). A diagnostic model based on EV marker expression correctly classified 88.9% of patients with reliable diagnostic performance after internal and external validations.

Conclusions

Immune profiling of plasmatic EVs represents a crucial step toward the identification of biomarkers of disease for PD and AP.

NPub.org/NN/9615a

EBV-specific CD8 T Lymphocytes and B Cells During Glatiramer Acetate Therapy in Patients With MS

Objective

Infection with Epstein-Barr virus (EBV) has been associated with clinical activity and risk of developing MS. The purpose of this study was to investigate the impact of glatiramer acetate (GA) therapy on EBV-specific immune responses and disease course.

Methods

We characterized EBV-specific CD8 T lymphocytes and B cells during disease-modifying treatments in 2 groups of patients with MS. We designed a 2-pronged approach consisting of a cross-sectional study (39 untreated patients, 38 patients who had undergone 12 months of GA treatment, and 48 healthy donors compatible for age and sex with the patients with MS) and a 12-month longitudinal study (35 patients treated with GA). CD8 EBV-specific T cells and B lymphocytes were studied using pentamers and multiparametric flow cytometry.

Results

We find that treatment with GA enhances viral recognition by inducing an increased number of circulating virus-specific CD8 T cells (p = 0.0043) and by relieving their features of exhaustion (p = 0.0053) and senescence (p < 0.0001, p = 0.0001). B cells, phenotypically and numerically tracked along the 1-year follow-up study, show a steady decrease in memory B-cell frequencies (p = 0.025), paralleled by an increase of the naive B subset.

Conclusion

GA therapy acts as a disease-modifying therapy restoring homeostasis in the immune system, including anti-EBV responses.

NPub.org/NN/9615b

Most-Read Articles

As of February 5, 2021

Laquinimod dampens IL-1β signaling and Th17-polarizing capacity of monocytes in patients with MS

S. Engel, V. Jolivel, S. H.-P. Kraus, et al. 2021;8:e908. doi.org/10.1212/NXI.0000000000000908

Is APOE ε4 associated with cognitive performance in early MS?

S. Engel, C. Graetz, A. Salmen, et al. 2020;7:e728. doi.org/10.1212/NXI.0000000000000728

Clinical approach to the diagnosis of autoimmune encephalitis in the pediatric patient

T. Cellucci, H. Van Mater, F. Graus, et al. 2020;7:e663. doi.org/10.1212/NXI.0000000000000663

Intrathecal B-cell accumulation and axonal damage distinguish MRI-based benign from aggressive onset in MS

S. Engel, M. Friedrich, M. Muthuraman, et al. 2019;6:e595. doi.org/10.1212/NXI.0000000000000595

Association of intrathecal pleocytosis and IgG synthesis with axonal damage in early MS

S. Engel, F. Steffen, T. Uphaus, et al. 2020;7:e679. doi.org/10.1212/NXI.0000000000000679

  • © 2021 American Academy of Neurology

Disputes & Debates: Rapid online correspondence

No comments have been published for this article.
Comment

NOTE: All authors' disclosures must be entered and current in our database before comments can be posted. Enter and update disclosures at http://submit.neurology.org. Exception: replies to comments concerning an article you originally authored do not require updated disclosures.

  • Stay timely. Submit only on articles published within 6 months of issue date.
  • Do not be redundant. Read any comments already posted on the article prior to submission.
  • 200 words maximum.
  • 5 references maximum. Reference 1 must be the article on which you are commenting.
  • 5 authors maximum. Exception: replies can include all original authors of the article.
  • Submitted comments are subject to editing and editor review prior to posting.

More guidelines and information on Disputes & Debates

Compose Comment

More information about text formats

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
Author Information
NOTE: The first author must also be the corresponding author of the comment.
First or given name, e.g. 'Peter'.
Your last, or family, name, e.g. 'MacMoody'.
Your email address, e.g. higgs-boson@gmail.com
Your role and/or occupation, e.g. 'Orthopedic Surgeon'.
Your organization or institution (if applicable), e.g. 'Royal Free Hospital'.
Publishing Agreement
NOTE: All authors, besides the first/corresponding author, must complete a separate Disputes & Debates Submission Form and provide via email to the editorial office before comments can be posted.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.

Vertical Tabs

You May Also be Interested in

Back to top
  • Article
    • Immune Profiling of Plasma-derived Extracellular Vesicles Identifies Parkinson Disease
    • EBV-specific CD8 T Lymphocytes and B Cells During Glatiramer Acetate Therapy in Patients With MS
    • Most-Read Articles
  • Info & Disclosures
Advertisement

Related Articles

  • No related articles found.

Alert Me

  • Alert me when eletters are published
Neurology: 96 (15)

Articles

  • Ahead of Print
  • Current Issue
  • Past Issues
  • Popular Articles
  • Translations

About

  • About the Journals
  • Ethics Policies
  • Editors & Editorial Board
  • Contact Us
  • Advertise

Submit

  • Author Center
  • Submit a Manuscript
  • Information for Reviewers
  • AAN Guidelines
  • Permissions

Subscribers

  • Subscribe
  • Activate a Subscription
  • Sign up for eAlerts
  • RSS Feed
Site Logo
  • Visit neurology Template on Facebook
  • Follow neurology Template on Twitter
  • Visit Neurology on YouTube
  • Neurology
  • Neurology: Clinical Practice
  • Neurology: Genetics
  • Neurology: Neuroimmunology & Neuroinflammation
  • AAN.com
  • AANnews
  • Continuum
  • Brain & Life
  • Neurology Today

Wolters Kluwer Logo

Neurology | Print ISSN:0028-3878
Online ISSN:1526-632X

© 2021 American Academy of Neurology

  • Privacy Policy
  • Feedback
  • Advertise