Olfactory Testing in Parkinson Disease and REM Behavior Disorder
A Machine Learning Approach
Citation Manager Formats
Make Comment
See Comments

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.
Abstract
Objective We sought to identify an abbreviated test of impaired olfaction amenable for use in busy clinical environments in prodromal (isolated REM sleep behavior disorder [iRBD]) and manifest Parkinson disease (PD).
Methods Eight hundred ninety individuals with PD and 313 controls in the Discovery cohort study underwent Sniffin’ Stick odor identification assessment. Random forests were initially trained to distinguish individuals with poor (functional anosmia/hyposmia) and good (normosmia/super-smeller) smell ability using all 16 Sniffin’ Sticks. Models were retrained using the top 3 sticks ranked by order of predictor importance. One randomly selected 3-stick model was tested in a second independent PD dataset (n = 452) and in 2 iRBD datasets (Discovery n = 241, Marburg n = 37) before being compared to previously described abbreviated Sniffin’ Stick combinations.
Results In differentiating poor from good smell ability, the overall area under the curve (AUC) value associated with the top 3 sticks (anise/licorice/banana) was 0.95 in the Development dataset (sensitivity 90%, specificity 92%, positive predictive value 92%, negative predictive value 90%). Internal and external validation confirmed AUCs ≥0.90. The combination of the 3-stick model determined poor smell, and an RBD screening questionnaire score of ≥5 separated those with iRBD from controls with a sensitivity, specificity, positive predictive value, and negative predictive value of 65%, 100%, 100%, and 30%.
Conclusions Our 3-Sniffin’-Stick model holds potential utility as a brief screening test in the stratification of individuals with PD and iRBD according to olfactory dysfunction.
Classification of Evidence This study provides Class III evidence that a 3-Sniffin’-Stick model distinguishes individuals with poor and good smell ability and can be used to screen for individuals with iRBD.
Glossary
- AUC=
- area under the curve;
- iRBD=
- isolated REM sleep behavior disorder;
- MLA=
- machine learning algorithm;
- NPV=
- negative predictive value;
- PD=
- Parkinson disease;
- PPV=
- positive predictive value;
- RBDSQ=
- REM Sleep Behavior Disorder Screening Questionnaire
Footnotes
Go to Neurology.org/N for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.
Class of Evidence: NPub.org/coe
- Received April 15, 2020.
- Accepted in final form January 15, 2021.
- © 2021 American Academy of Neurology
AAN Members
We have changed the login procedure to improve access between AAN.com and the Neurology journals. If you are experiencing issues, please log out of AAN.com and clear history and cookies. (For instructions by browser, please click the instruction pages below). After clearing, choose preferred Journal and select login for AAN Members. You will be redirected to a login page where you can log in with your AAN ID number and password. When you are returned to the Journal, your name should appear at the top right of the page.
AAN Non-Member Subscribers
Purchase access
For assistance, please contact:
AAN Members (800) 879-1960 or (612) 928-6000 (International)
Non-AAN Member subscribers (800) 638-3030 or (301) 223-2300 option 3, select 1 (international)
Sign Up
Information on how to subscribe to Neurology and Neurology: Clinical Practice can be found here
Purchase
Individual access to articles is available through the Add to Cart option on the article page. Access for 1 day (from the computer you are currently using) is US$ 39.00. Pay-per-view content is for the use of the payee only, and content may not be further distributed by print or electronic means. The payee may view, download, and/or print the article for his/her personal, scholarly, research, and educational use. Distributing copies (electronic or otherwise) of the article is not allowed.
Disputes & Debates: Rapid online correspondence
NOTE: All authors' disclosures must be entered and current in our database before comments can be posted. Enter and update disclosures at http://submit.neurology.org. Exception: replies to comments concerning an article you originally authored do not require updated disclosures.
- Stay timely. Submit only on articles published within 6 months of issue date.
- Do not be redundant. Read any comments already posted on the article prior to submission.
- 200 words maximum.
- 5 references maximum. Reference 1 must be the article on which you are commenting.
- 5 authors maximum. Exception: replies can include all original authors of the article.
- Submitted comments are subject to editing and editor review prior to posting.
You May Also be Interested in
Related Articles
- No related articles found.