Network-Related Changes in Neurotransmitters and Seizure Propagation During Rodent Epileptogenesis
Citation Manager Formats
Make Comment
See Comments

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.
Abstract
Objective To test the hypothesis that glutamate and GABA are linked to the formation of epilepsy networks and the triggering of spontaneous seizures, we examined seizure initiation/propagation characteristics and neurotransmitter levels during epileptogenesis in a translationally relevant rodent model of mesial temporal lobe epilepsy.
Methods The glutamine synthetase (GS) inhibitor methionine sulfoximine was infused into one of the hippocampi in laboratory rats to create a seizure focus. Long-term video-intracranial EEG recordings and brain microdialysis combined with mass spectrometry were used to examine seizure initiation, seizure propagation, and extracellular brain levels of glutamate and GABA.
Results All seizures (n = 78 seizures, n = 3 rats) appeared first in the GS-inhibited hippocampus of all animals, followed by propagation to the contralateral hippocampus. Propagation time decreased significantly from 11.65 seconds early in epileptogenesis (weeks 1–2) to 6.82 seconds late in epileptogenesis (weeks 3–4, paired t test, p = 0.025). Baseline extracellular glutamate levels were 11.6-fold higher in the hippocampus of seizure propagation (7.3 µM) vs the hippocampus of seizure onset (0.63 µM, analysis of variance/Fisher least significant difference, p = 0.01), even though the concentrations of the major glutamate transporter proteins excitatory amino acid transporter subtypes 1 and 2 and xCT were unchanged between the brain regions. Finally, extracellular GABA in the seizure focus decreased significantly from baseline several hours before a spontaneous seizure (paired t test/false discovery rate).
Conclusion The changes in glutamate and GABA suggest novel and potentially important roles of the amino acids in epilepsy network formation and in the initiation and propagation of spontaneous seizures.
Glossary
- EAAT=
- excitatory amino acid transporter;
- FA=
- fractional anisotropy;
- GS=
- glutamine synthetase;
- MSO=
- methionine sulfoximine;
- MTLE=
- mesial temporal lobe epilepsy;
- PBS=
- phosphate-buffered saline
Footnotes
Go to Neurology.org/N for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.
CME Course: NPub.org/cmelist
- Received May 19, 2020.
- Accepted in final form January 29, 2021.
- © 2021 American Academy of Neurology
AAN Members
We have changed the login procedure to improve access between AAN.com and the Neurology journals. If you are experiencing issues, please log out of AAN.com and clear history and cookies. (For instructions by browser, please click the instruction pages below). After clearing, choose preferred Journal and select login for AAN Members. You will be redirected to a login page where you can log in with your AAN ID number and password. When you are returned to the Journal, your name should appear at the top right of the page.
AAN Non-Member Subscribers
Purchase access
For assistance, please contact:
AAN Members (800) 879-1960 or (612) 928-6000 (International)
Non-AAN Member subscribers (800) 638-3030 or (301) 223-2300 option 3, select 1 (international)
Sign Up
Information on how to subscribe to Neurology and Neurology: Clinical Practice can be found here
Purchase
Individual access to articles is available through the Add to Cart option on the article page. Access for 1 day (from the computer you are currently using) is US$ 39.00. Pay-per-view content is for the use of the payee only, and content may not be further distributed by print or electronic means. The payee may view, download, and/or print the article for his/her personal, scholarly, research, and educational use. Distributing copies (electronic or otherwise) of the article is not allowed.
Letters: Rapid online correspondence
REQUIREMENTS
If you are uploading a letter concerning an article:
You must have updated your disclosures within six months: http://submit.neurology.org
Your co-authors must send a completed Publishing Agreement Form to Neurology Staff (not necessary for the lead/corresponding author as the form below will suffice) before you upload your comment.
If you are responding to a comment that was written about an article you originally authored:
You (and co-authors) do not need to fill out forms or check disclosures as author forms are still valid
and apply to letter.
Submission specifications:
- Submissions must be < 200 words with < 5 references. Reference 1 must be the article on which you are commenting.
- Submissions should not have more than 5 authors. (Exception: original author replies can include all original authors of the article)
- Submit only on articles published within 6 months of issue date.
- Do not be redundant. Read any comments already posted on the article prior to submission.
- Submitted comments are subject to editing and editor review prior to posting.
You May Also be Interested in
More Online
Dr. Jeffrey Allen and Dr. Nicholas Purcell
► Watch
Topics Discussed
Alert Me
Recommended articles
-
Articles
Hippocampal GABA and glutamate transporter immunoreactivity in patients with temporal lobe epilepsyG.W. Mathern, D. Mendoza, A. Lozada et al.Neurology, February 01, 1999 -
Articles
A subcortical network of dysfunction in TLE measured by magnetic resonance spectroscopyH. P. Hetherington, R. I. Kuzniecky, K. Vives et al.Neurology, December 10, 2007 -
Views & Reviews
A meta-analysis on progressive atrophy in intractable temporal lobe epilepsyTime is brain?Lorenzo Caciagli, Andrea Bernasconi, Samuel Wiebe et al.Neurology, July 07, 2017 -
Articles
Diffusion mapping applied to mesial temporal lobe epilepsyPreliminary observationsJames W. Hugg, Edward J. Butterworth, Ruben I. Kuzniecky et al.Neurology, July 01, 1999