Skip to main content
Advertisement
  • Neurology.org
  • Journals
    • Neurology
    • Clinical Practice
    • Genetics
    • Neuroimmunology & Neuroinflammation
  • Specialty Sites
    • COVID-19
    • Practice Current
    • Practice Buzz
    • Without Borders
    • Equity, Diversity and Inclusion
    • Innovations in Care Delivery
  • Collections
    • Topics A-Z
    • Residents & Fellows
    • Infographics
    • Patient Pages
    • Null Hypothesis
    • Translations
  • Podcast
  • CME
  • About
    • About the Journals
    • Contact Us
    • Editorial Board
  • Authors
    • Submit a Manuscript
    • Author Center

Advanced Search

Main menu

  • Neurology.org
  • Journals
    • Neurology
    • Clinical Practice
    • Genetics
    • Neuroimmunology & Neuroinflammation
  • Specialty Sites
    • COVID-19
    • Practice Current
    • Practice Buzz
    • Without Borders
    • Equity, Diversity and Inclusion
    • Innovations in Care Delivery
  • Collections
    • Topics A-Z
    • Residents & Fellows
    • Infographics
    • Patient Pages
    • Null Hypothesis
    • Translations
  • Podcast
  • CME
  • About
    • About the Journals
    • Contact Us
    • Editorial Board
  • Authors
    • Submit a Manuscript
    • Author Center
  • Home
  • Latest Articles
  • Current Issue
  • Past Issues
  • Residents & Fellows

User menu

  • Subscribe
  • My Alerts
  • Log in

Search

  • Advanced search
Neurology
Home
The most widely read and highly cited peer-reviewed neurology journal
  • Subscribe
  • My Alerts
  • Log in
Site Logo
  • Home
  • Latest Articles
  • Current Issue
  • Past Issues
  • Residents & Fellows

Share

February 23, 2021; 96 (8) What's Happening

What's Happening in Neurology® Neuroimmunology & Neuroinflammation

First published February 22, 2021, DOI: https://doi.org/10.1212/WNL.0000000000011472
Full PDF
Citation
What's Happening in Neurology® Neuroimmunology & Neuroinflammation
Neurology Feb 2021, 96 (8) 376; DOI: 10.1212/WNL.0000000000011472

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Permissions

Make Comment

See Comments

Downloads
10

Share

  • Article
  • Info & Disclosures
Loading

Papers appearing in the November 2020 issue

CSF Neurofilament Light Chain Testing as an Aid to Determine Treatment Strategies in MS

Objective

To evaluate the use of CSF neurofilament light chain (NfL) measurements in clinical practice as well as their effect on treatment strategies and outcomes in patients with MS.

Methods

This was an observational cohort study of patients with MS who had a CSF NfL measurement between December 2015 and July 2018 as part of their routine clinical care. Treatment strategies were classified as “No Treatment/No Escalation” (no treatment or no escalation of treatment) or “Treatment/Escalation” (first-line injectable/oral disease-modifying therapies (DMTs), highly active DMTs, or treatment escalation). Change in Expanded Disability Status Scale (EDSS) scores was evaluated after the 1-year follow-up.

Results

Of 203 patients with MS, 117 (58%) had relapsing-remitting MS. Disease activity was most frequently indicated by elevated CSF NfL (n = 85), followed by clinical (n = 81) and MRI activity (n = 65). CSF NfL measurements were independently associated with clinical (p = 0.02) and MRI activity (p < 0.001). Of those with elevated CSF NfL as the only evidence of disease activity (n = 22), 77% had progressive MS (PMS). In patients with PMS, 17 (20%) had elevated CSF NfL as the sole indicator of disease activity. Elevated CSF NfL resulted more frequently in Treatment/Escalation than normal CSF NfL (p < 0.001). Median EDSS change at follow-up was similar between patients receiving No Treatment/No Escalation and Treatment/Escalation decisions (p = 0.81).

Conclusions

CSF NfL measurements informed treatment strategies, alongside clinical and MRI measures. CSF NfL levels were the only indicator of disease activity in a subset of patients, which was more pronounced in patients with PMS. Elevated CSF NfL was associated with more Treatment/Escalation strategies, which had an impact on EDSS outcomes at 1 year.

NPub.org/NN/9608a

Serum Neurofilament Light Chain: No Clear Relation to Cognition and Neuropsychiatric Symptoms in Stable MS

Objective

To explore the hypothesis that serum neurofilament light chain (sNfL) indicative of neuroaxonal damage may improve precise disease profiling with regard to cognition and neuropsychiatric symptoms, we analyzed potential associations of sNfL levels with cognitive test scores, fatigue, depression, and anxiety.

Methods

Patients with relapsing-remitting and secondary progressive MS (SPMS) underwent an elaborated assessment including MRI, various cognitive tests, and patient-reported outcomes. We determined sNfL levels by single molecule array (Simoa) assay. Relationships between sNfL, cognition, neuropsychiatric symptoms, and demographical data were analyzed using correlations, group comparisons, and regressions.

Results

In 45 clinically stable patients with MS (Expanded Disability Status Scale = 2.73 ± 1.12, disease duration = 10.03 ± 7.49 years), 40.0% were cognitively impaired. Mean sNfL levels were 16.02 ± 10.39 pg/mL, with higher levels in the SPMS subgroup (p = 0.038). sNfL levels did reliably link neither with the investigated cognitive and affective parameters nor with fatigue levels. The only relationship found in a small subgroup of patients with SPMS (n = 7) with visuospatial learning (r = −0.950, p = 0.001) and memory (r = −0.813; p = 0.026) disappeared when further controlling for age, educational level, and sex.

Conclusions

In patients with stable MS at less advanced disease stages, sNfL did not convincingly relate to cognitive performance, fatigue, depression, or anxiety and thus may not serve as a surrogate biomarker for neuropsychological status in such populations.

NPub.org/NN/9608b

Most-Read Articles

As of December 22, 2020

MOG cell-based assay detects non-MS patients with inflammatory neurologic disease

P. Waters, M. Woodhall, K.C. O'Connor, et al. 2015;2:e89. doi.org/10.1212/NXI.0000000000000089

Aquaporin-4 autoimmunity

A. Zekeridou, V.A. Lennon 2015;2:e110. doi.org/10.1212/NXI.0000000000000110

Increased frequency of anti-Ma2 encephalitis associated with immune checkpoint inhibitors

A. Vogrig, M. Fouret, B. Joubert, et al. 2019;6:604. doi.org/10.1212/NXI.0000000000000604

Guillain-Barré syndrome related to COVID-19 infection

P. Alberti, S. Beretta, M. Piatti, et al. 2020;7:741. doi.org/10.1212/NXI.0000000000000741

Does time equal vision in the acute treatment of a cohort of AQP4 and MOG optic neuritis?

H. Stiebel-Kalish, M.A. Hellmann, M. Mimouni, et al. 2019;6:e572. doi.org/10.1212/NXI.0000000000000572

  • Received December 23, 2020.
  • Accepted in final form December 22, 2020.
  • © 2021 American Academy of Neurology

Disputes & Debates: Rapid online correspondence

No comments have been published for this article.
Comment

NOTE: All authors' disclosures must be entered and current in our database before comments can be posted. Enter and update disclosures at http://submit.neurology.org. Exception: replies to comments concerning an article you originally authored do not require updated disclosures.

  • Stay timely. Submit only on articles published within the last 8 weeks.
  • Do not be redundant. Read any comments already posted on the article prior to submission.
  • 200 words maximum.
  • 5 references maximum. Reference 1 must be the article on which you are commenting.
  • 5 authors maximum. Exception: replies can include all original authors of the article.
  • Submitted comments are subject to editing and editor review prior to posting.

More guidelines and information on Disputes & Debates

Compose Comment

More information about text formats

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
Author Information
NOTE: The first author must also be the corresponding author of the comment.
First or given name, e.g. 'Peter'.
Your last, or family, name, e.g. 'MacMoody'.
Your email address, e.g. higgs-boson@gmail.com
Your role and/or occupation, e.g. 'Orthopedic Surgeon'.
Your organization or institution (if applicable), e.g. 'Royal Free Hospital'.
Publishing Agreement
NOTE: All authors, besides the first/corresponding author, must complete a separate Disputes & Debates Submission Form and provide via email to the editorial office before comments can be posted.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.

Vertical Tabs

You May Also be Interested in

Back to top
  • Article
    • CSF Neurofilament Light Chain Testing as an Aid to Determine Treatment Strategies in MS
    • Serum Neurofilament Light Chain: No Clear Relation to Cognition and Neuropsychiatric Symptoms in Stable MS
    • Most-Read Articles
  • Info & Disclosures
Advertisement

Related Articles

  • No related articles found.

Alert Me

  • Alert me when eletters are published
Neurology: 96 (9)

Articles

  • Ahead of Print
  • Current Issue
  • Past Issues
  • Popular Articles
  • Translations

About

  • About the Journals
  • Ethics Policies
  • Editors & Editorial Board
  • Contact Us
  • Advertise

Submit

  • Author Center
  • Submit a Manuscript
  • Information for Reviewers
  • AAN Guidelines
  • Permissions

Subscribers

  • Subscribe
  • Activate a Subscription
  • Sign up for eAlerts
  • RSS Feed
Site Logo
  • Visit neurology Template on Facebook
  • Follow neurology Template on Twitter
  • Visit Neurology on YouTube
  • Neurology
  • Neurology: Clinical Practice
  • Neurology: Genetics
  • Neurology: Neuroimmunology & Neuroinflammation
  • AAN.com
  • AANnews
  • Continuum
  • Brain & Life
  • Neurology Today

Wolters Kluwer Logo

Neurology | Print ISSN:0028-3878
Online ISSN:1526-632X

© 2021 American Academy of Neurology

  • Privacy Policy
  • Feedback
  • Advertise