The Role of OCT Criteria and Machine Learning in Multiple Sclerosis and Optic Neuritis Diagnosis
Citation Manager Formats
Make Comment
See Comments

Abstract
Background and Objectives: Recent studies have suggested that inter-eye differences (IEDs) in peripapillary retinal nerve fiber layer (pRNFL) or ganglion cell+inner plexiform (GCIPL) thickness by spectral-domain optical coherence tomography (SD-OCT) may identify people with a history of unilateral optic neuritis (ON). However, this requires further validation. Machine learning classification may be useful for validating thresholds for OCT IEDs and for examining added utility for visual function tests, such as low-contrast letter acuity (LCLA), in the diagnosis of people with multiple sclerosis (PwMS) and for unilateral ON history.
Methods: Participants were from 11 sites within the International Multiple Sclerosis Visual System (IMSVISUAL) consortium. pRNFL and GCIPL thicknesses were measured using SD-OCT. A composite score combining OCT and visual measures was compared individual measurements to determine the best model to distinguish PwMS from controls. These methods were also used to distinguish those with history of ON among PwMS. ROC curve analysis was performed on a training dataset (2/3 of cohort), then applied to a testing dataset (1/3 of cohort). Support vector machine (SVM) analysis was used to assess whether machine learning models improved diagnostic capability of OCT.
Results: Among 1,568 PwMS and 552 controls, variable selection models identified GCIPL IED, average GCIPL thickness (both eyes), and binocular 2.5% LCLA as most important for classifying PwMS vs. controls. This composite score performed best, with AUC=0.89 (95% CI 0.85, 0.93), sensitivity=81% and specificity=80%. The composite score ROC curve performed better than any of the individual measures from the model (p<0.0001). GCIPL IED remained the best single discriminator of unilateral ON history among PwMS (AUC=0.77, 95% CI 0.71,0.83, sensitivity=68%, specificity=77%). SVM analysis performed comparably to standard logistic regression models.
Conclusions: A composite score combining visual structure and function improved the capacity of SD-OCT to distinguish PwMS from controls. GCIPL IED best distinguished those with history of unilateral ON. SVM performed as well as standard statistical models for these classifications.
Classification of Evidence: The study provides Class III evidence that SD-OCT accurately distinguishes multiple sclerosis from normal controls as compared to clinical criteria.
- Received September 29, 2021.
- Accepted in final form May 11, 2022.
- © 2022 American Academy of Neurology
AAN Members
We have changed the login procedure to improve access between AAN.com and the Neurology journals. If you are experiencing issues, please log out of AAN.com and clear history and cookies. (For instructions by browser, please click the instruction pages below). After clearing, choose preferred Journal and select login for AAN Members. You will be redirected to a login page where you can log in with your AAN ID number and password. When you are returned to the Journal, your name should appear at the top right of the page.
AAN Non-Member Subscribers
Purchase access
For assistance, please contact:
AAN Members (800) 879-1960 or (612) 928-6000 (International)
Non-AAN Member subscribers (800) 638-3030 or (301) 223-2300 option 3, select 1 (international)
Sign Up
Information on how to subscribe to Neurology and Neurology: Clinical Practice can be found here
Purchase
Individual access to articles is available through the Add to Cart option on the article page. Access for 1 day (from the computer you are currently using) is US$ 39.00. Pay-per-view content is for the use of the payee only, and content may not be further distributed by print or electronic means. The payee may view, download, and/or print the article for his/her personal, scholarly, research, and educational use. Distributing copies (electronic or otherwise) of the article is not allowed.
Disputes & Debates: Rapid online correspondence
REQUIREMENTS
If you are uploading a letter concerning an article:
You must have updated your disclosures within six months: http://submit.neurology.org
Your co-authors must send a completed Publishing Agreement Form to Neurology Staff (not necessary for the lead/corresponding author as the form below will suffice) before you upload your comment.
If you are responding to a comment that was written about an article you originally authored:
You (and co-authors) do not need to fill out forms or check disclosures as author forms are still valid
and apply to letter.
Submission specifications:
- Submissions must be < 200 words with < 5 references. Reference 1 must be the article on which you are commenting.
- Submissions should not have more than 5 authors. (Exception: original author replies can include all original authors of the article)
- Submit only on articles published within 6 months of issue date.
- Do not be redundant. Read any comments already posted on the article prior to submission.
- Submitted comments are subject to editing and editor review prior to posting.
You May Also be Interested in
Related Articles
- No related articles found.