A 5-year-old girl with abnormal facial features, strabismus, horizontal nystagmus, hypotonia, and a history of hypersomnolence, seizures and developmental delay began to experience a generalized complex movement disorder. Clinically, there was a mixed hyperkinetic movement disorder, consisting of chorea, dystonia, myoclonus, and hand stereotypies. The presence of generalized jerks, interposed with those complex movements, resembled a stop-motion animation (Video 1), similar to the animation technique in which objects are physically manipulated in small increments and

(A) and (B): Axial T2-weighted brain MRI; (C) and (D): Axial T1-weighted brain MRI, all showing volumetric reduction bilaterally, notably in frontal lobe.

From the Internal Medicine Department (G.L.F.), Pontifical Catholic University of Paraná; and Neurology Pediatric Unit (E.P.B., D.C.B.R., A.C.S.C.), Universidade Federal do Paraná, Curitiba (PR), Brazil.

Go to Neurology.org/N for full disclosures.

Teaching slides
links.lww.com/WNL/C556
photographed frame by frame. Brain MRI showed mild frontal cortical atrophy (Figure). Genetic investigation was performed, and CGH array was performed, finding a pathogenic variant arr[GRCh37]5q31.2q31.3(13903279_140058893)x1 in PURA gene, compatible with PURA syndrome.\(^1\) The presence of complex hyperkinetic movement disorders in infants with global developmental delay may be an important clue to diagnose PURA syndrome.\(^1\) Affected patients may be misdiagnosed with dyskinetic cerebral palsy if genetic studies are not pursued.\(^2\)

Study Funding
The authors report no targeted funding.

Disclosure
All authors report no disclosures relevant to the manuscript. Go to Neurology.org/N for full disclosures.

Publication History
Received by Neurology May 7, 2022. Accepted in final form October 11, 2022. Submitted and externally peer reviewed. The handling editor was Associate Editor Roy Strowd III, MD, Med, MS.

Appendix

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gustavo Leite Franklin, MD, PhD</td>
<td>Internal Medicine Department, Pontifical Catholic University of Paraná, Curitiba (PR), Brazil</td>
<td>Drafting/revision of the manuscript for content, including medical writing for content; major role in the acquisition of data; study concept or design; analysis or interpretation of data</td>
</tr>
<tr>
<td>Eli Paula Bacheladenski, MD</td>
<td>Neurology Pediatric Unit, Universidade Federal do Paraná, Curitiba (PR), Brazil</td>
<td>Drafting/revision of the manuscript for content, including medical writing for content; major role in the acquisition of data; analysis or interpretation of data</td>
</tr>
<tr>
<td>Danielle C. B. Rodrigues, MD</td>
<td>Neurology Pediatric Unit, Universidade Federal do Paraná, Curitiba (PR), Brazil</td>
<td>Drafting/revision of the manuscript for content, including medical writing for content; study concept or design; analysis or interpretation of data</td>
</tr>
<tr>
<td>Ana C. S. Crippa, MD, PhD</td>
<td>Neurology Pediatric Unit, Universidade Federal do Paraná, Curitiba (PR), Brazil</td>
<td>Drafting/revision of the manuscript for content, including medical writing for content; major role in the acquisition of data; study concept or design; analysis or interpretation of data</td>
</tr>
</tbody>
</table>

References

The *Neurology®* Null Hypothesis Online Collection...
Contributing to a transparent research reporting culture!

The *Neurology* journals have partnered with the Center for Biomedical Research Transparency (CBMRT) to promote and facilitate transparent reporting of biomedical research by ensuring that all biomedical results—including negative and inconclusive results—are accessible to researchers and clinicians in the interests of full transparency and research efficiency.

Neurology’s Null Hypothesis Collection is a dedicated online section for well conducted negative, inconclusive, or replication studies. View the collection at: NPub.org/NullHypothesis
Teaching Video NeuroImage: Stop-Motion Chorea in PURA Syndrome
Neurology 2023;100;492-493 Published Online before print December 20, 2022
DOI 10.1212/WNL.0000000000201605

This information is current as of December 20, 2022

Updated Information & Services	including high resolution figures, can be found at: http://n.neurology.org/content/100/10/492.full
References	This article cites 2 articles, 2 of which you can access for free at: http://n.neurology.org/content/100/10/492.full#ref-list-1
Subspecialty Collections	This article, along with others on similar topics, appears in the following collection(s): All Movement Disorders http://n.neurology.org/cgi/collection/all_movement_disorders Chorea http://n.neurology.org/cgi/collection/chorea Myoclonus http://n.neurology.org/cgi/collection/myoclonus
Permissions & Licensing	Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: http://www.neurology.org/about/about_the_journal#permissions
Reprints	Information about ordering reprints can be found online: http://n.neurology.org/subscribers/advertise