RESIDENT & FELLOW SECTION

Teaching NeuroImage: A New Imaging Finding in a Boy With Salla Disease Caused by a Pathogenic Variant in the SLC17A5 Gene

Juhi Gupta, MD, DM, Nihaal Reddy, MD, Kshitij Mankad, MBBS, MRCP, FrCR, Utkarsh Kabra, MD, Anu Bhandari, MD, Meenu Bagarhatta, MD, and Ashok Gupta, MD

Neurology® 2023;101:631-632. doi:10.1212/WNL.0000000000207346

Correspondence
Dr. Gupta
juhiguptadr@gmail.com

A 7-year-old boy born to nonconsanguineous parents presented with developmental delay, dysmorphism, and an ataxic gait. An MRI of the brain demonstrated hypomyelinating leukodystrophy (Figure, A and B), cerebellar atrophy (Figure, C and D), and thinning of the corpus callosum (Figure, E). T1 hyperintensities were also seen in the bilateral deep gray nuclei, brainstem, and cerebellum (Figure, F–H). Genetic testing confirmed a diagnosis of Salla disease (SD) by revealing a likely pathogenic, homozygous missense variation in the SLC17A5 gene (chr6:g.73644582C>T). Both parents were found to be carriers consistent with autosomal recessive inheritance. Sialic acid storage disease (SASD) is a neurodegenerative lysosomal storage disorder, which can present as a slowly progressive form (SD), a severe fetal-onset form, or as infantile free SASD; however, intermediate forms also exist. The differential for symmetrical T1 hyperintensities includes kernicterus, hypoxic ischemic injury, neurodegeneration with brain iron accumulation, Fabry disease, other lysosomal storage disorders, and Wilson disease, which were considered and excluded for this case.

Figure MRI of the Brain Shows Diffuse Hypomyelination With Hyperintensity of the Basal Ganglia, Brainstem, and Cerebellum

T2-weighted axial images (A, B) demonstrate diffuse hyperintense hypomyelinating pattern. T2-weighted axial (C) and coronal (D) images demonstrate cerebellar atrophy. T1-weighted sagittal image (E) demonstrates corpus callosum thinning and vermian atrophy (arrows). T1-weighted axial images (F–H) demonstrate hyperintensity (arrows) of the basal ganglia, brainstem, and cerebellum.

From the Sawai Man Singh Medical College (J.G., A.B., M.B., A.G.), Jaipur; Rainbow Children’s Hospital (N.R.), Hyderabad, India; Great Ormond Street Hospital for Children (K.M.), London, United Kingdom; and Getwell Poly Clinic and Hospital (U.K.), Jaipur, India.

Go to Neurology.org/N for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.

Copyright © 2023 American Academy of Neurology

Copyright © 2023 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.
T1 hyperintensities have not previously been described in SD.\(^1\) One plausible explanation is the deposition of sialic acid, which is a paramagnetic substance.\(^2\)

Author Contributions

J. Gupta: drafting/revision of the article for content, including medical writing for content; major role in the acquisition of data; study concept or design; and analysis or interpretation of data. N. Reddy: drafting/revision of the article for content, including medical writing for content; analysis or interpretation of data. K. Mankad: drafting/revision of the article for content, including medical writing for content; analysis or interpretation of data. U. Kabra: major role in the acquisition of data; analysis or interpretation of data. A. Bhandari: major role in the acquisition of data; analysis or interpretation of data. M. Bagarhatta: major role in the acquisition of data; analysis or interpretation of data. A. Gupta: major role in the acquisition of data; analysis or interpretation of data.

Study Funding

No targeted funding reported.

Disclosure

The authors report no relevant disclosures. Go to Neurology.org/N for full disclosures.

Publication History

Received by Neurology December 12, 2022. Accepted in final form May 5, 2023. Submitted and externally peer reviewed. The handling editor was Resident & Fellow Section Deputy Editor Ariel Lyons-Warren, MD, PhD.

References

Neurology® Video Journal Club

Join us to learn from experts as they discuss recently published *Neurology* journal articles and hot topics in the field of neurology. Articles and discussants are selected by the editors of *Neurology*.

Check back on Fridays for newly released episodes on topics including:

- MG/ALS/Neuromuscular
- Cognitive Disorders
- Epilepsy
- Headache/Migraine
- Parkinson Disease/Movement Disorders
- Stroke
- Multiple Sclerosis

The Neurology® Null Hypothesis Online Collection…

Contributing to a transparent research reporting culture!

The *Neurology* journals have partnered with the Center for Biomedical Research Transparency (CBMRT) to promote and facilitate transparent reporting of biomedical research by ensuring that all biomedical results—including negative and inconclusive results—are accessible to researchers and clinicians in the interests of full transparency and research efficiency.

Neurology’s Null Hypothesis Collection is a dedicated online section for well conducted negative, inconclusive, or replication studies. View the collection at: NPub.org/NullHypothesis
Teaching NeuroImage: A New Imaging Finding in a Boy With Salla Disease Caused by a Pathogenic Variant in the SLC17A5 Gene
Juhi Gupta, Nihaal Reddy, Kshitij Mankad, et al.

Neurology 2023;101;631-632 Published Online before print August 1, 2023
DOI 10.1212/WNL.0000000000207546

This information is current as of August 1, 2023

<table>
<thead>
<tr>
<th>Updated Information & Services</th>
<th>including high resolution figures, can be found at: http://n.neurology.org/content/101/14/631.full</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
<td>This article cites 2 articles, 0 of which you can access for free at: http://n.neurology.org/content/101/14/631.full#ref-list-1</td>
</tr>
<tr>
<td>Subspecialty Collections</td>
<td>This article, along with others on similar topics, appears in the following collection(s):</td>
</tr>
<tr>
<td></td>
<td>All Genetics http://n.neurology.org/cgi/collection/all_genetics</td>
</tr>
<tr>
<td></td>
<td>Basal ganglia http://n.neurology.org/cgi/collection/basal_ganglia</td>
</tr>
<tr>
<td></td>
<td>Leukodystrophies http://n.neurology.org/cgi/collection/leukodystrophies</td>
</tr>
<tr>
<td></td>
<td>MRI http://n.neurology.org/cgi/collection/mri</td>
</tr>
<tr>
<td>Permissions & Licensing</td>
<td>Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: http://www.neurology.org/about/about_the_journal#permissions</td>
</tr>
<tr>
<td>Reprints</td>
<td>Information about ordering reprints can be found online: http://n.neurology.org/subscribers/advertise</td>
</tr>
</tbody>
</table>

Neurology® is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright © 2023 American Academy of Neurology. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.