Clinical Reasoning: A 17-Year-Old Girl With Progressive Cognitive Impairment

Bo Zhao, MM,* Zonghong Zhu, MD,* Jinjing Zhao, MD, Miao Yang, MM, Yimo Zhang, MD, Hang Li, MD, PhD, Shuyi Pan, MD, PhD, Xiaokun Qi, MD, PhD, and Yingxin Yu, MD, PhD

Neurology® 2023;101:e1466-e1472. doi:10.1212/WNL.0000000000207597

Abstract

A 17-year-old girl presented with a long history of cognitive impairment, personality and behavioral changes, dysarthria, and paroxysmal lower-extremity weakness. She was initially suspected of having mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes because of stroke-like symptoms, such as episodic lower-extremity weakness, as well as abnormal brain MRI findings of generalized cerebral atrophy, extensive high-intensity lesions in the cortex and subcortical white matter on fluid-attenuated inversion recovery images, decreased N-acetyl aspartate/creatine ratio, and a lactate peak in the focal area on spectrum images. However, there were no relatives with similar presentations in the family of the patient. The whole mitochondrial genome and whole-exome sequencing did not suggest pathogenic mutations, and no abnormalities were found in the blood or CSF lactate levels. In this case, we detail the clinical manifestations, diagnostic workup, and imaging findings. This case highlights the importance of assessing cognitive function and the relevant differential diagnoses in an adolescent with cognitive impairment.

*These authors contributed equally to this work as co-first authors.

From the Department of Neurology (B.Z., Y.Z., X.Q., Y.Y.), The First Medical Center, Chinese PLA General Hospital, Beijing; The Second School of Clinical Medicine (B.Z., M.Y., S.P.), Southern Medical University, Guangzhou; Department of Hyperbaric Oxygen (B.Z., H.L., S.P.), and Department of Emergency (J.Z.), Sixth Medical Center of Chinese PLA General Hospital; and Department of Neurology (J.Z.), The 305th Hospital of the People’s Liberation Army, Beijing, China.

Go to Neurology.org/N for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.
Section 1

A 17-year-old Chinese right-handed girl presented with worsening memory for 6 years. Six years ago, her academic performance dropped dramatically due to short-term memory loss, trouble concentrating, and agitation. Her symptoms progressed from forgetting appointments and asking the same question to being unable to recall time and place. Three years ago, she developed episodic weakness in both lower extremities (more severe on the left side), causing unstable walking and paroxysmal falls. She experienced fatigue and drowsiness, and 1 year ago, she experienced slurred and repetitive speech. Occasionally, she had drooping eyelids bilaterally and choked while drinking water. She became increasingly nervous, as well as cried more readily and experienced difficulties with communication. She was diagnosed with a psychiatric disorder without improvement after antipsychotics.

Questions for Consideration:
1. What is the localization for her presentation?
2. What is the differential diagnosis?
3. Which investigations would you perform?
Section 2

Progressive memory loss may involve the cerebral cortex, thalamus, hippocampus, and medial temporal lobe. Dysarthria and weakness of the lower extremities may involve the pyramidal tract. Personality and behavioral abnormalities may include the frontotemporal lobe and limbic system. Congenital diseases and acquired diseases, such as hereditary causes, infectious diseases, metabolic, and toxic encephalopathies, should be considered.

Four months before, the patient’s brain MRI revealed extensive cortical atrophy (Figure, A) and high intensity in the cortex and subcortical white matter (Figure, B) without enhancement. MR spectroscopy (MRS) demonstrated a decreased N-acetyl aspartate (NAA)/creatine (Cr) ratio and lactate peak in the focal area (Figure, C), thus leading to a suspected mitochondrial encephalomyopathy with lactic acidosis and stroke-like episode (MELAS) diagnosis. However, serum lactic acid levels and muscle biopsy results were normal without pathogenic mutations detected in either the mitochondrial genome or on whole-exome sequencing.

The patient’s condition did not improve after 4 months of Co-enzyme Q and multivitamins. In our department, neurologic examination revealed poor memory and attention, mild dysarthria, normal pharyngeal reflex, muscle strength and tone in all 4 limbs, inability to walk straight, and positive Babinski sign on the left side. The Montreal Cognitive Assessment (MoCA) and Mini-Mental State Examination (MMSE) scores were 12/30 and 19/30, respectively. EEG revealed single slow spike-wave complexes in the leftprefrontal lobe, but electromyographic findings were normal.

Questions for Consideration:
1. What is MELAS?
2. What clinical tests and investigations suggest a diagnosis of MELAS?
3. Can the patient be diagnosed with MELAS?

Figure Abnormalities of MRI of the Brain

A, a, A, b, B, a, B, b, B, c, B, d, C

T1 MRI sequence revealed extensive cortical atrophy (A). Fluid-attenuated inversion recovery sequence showed multiple cortical and subcortical white matter hyperintense signal changes, mostly within the left frontoparietal and bilateral temporal lobes (B). MR spectroscopy demonstrated a decreased NAA/Cr ratio and lactate peak (arrow) in the focal area (C). Cr = creatine; NAA = N-acetyl aspartate.
MELAS is a maternally inherited disorder caused by mutations in mitochondrial or nuclear genes, causing stroke-like episodes, dementia, epilepsy, lactic acidemia, myopathy, recurrent headaches, and hearing impairment. Imaging demonstrates high T2 signal in the cerebral cortex that is not limited to arterial regions. Serial imaging reveals that these lesions migrate over time and appear atrophied, and NAA/Cr on MRS is decreased with an increased lactate peak.

The patient’s episodic lower-extremity weakness suggested a possible stroke-like episode. Dysarthria, ptosis, personality changes, and behavioral changes can also be observed in patients with MELAS. MRI displayed generalized cerebral atrophy and a high lactate peak on MRS. Some studies have shown that Coenzyme Q and multivitamins can treat mitochondrial diseases. However, mitochondrial gene tests, muscle biopsies, blood lactic acid levels, and hereditary family history were negative.

Questions for Consideration:
1. How does this information change your differential diagnosis?
2. What other diagnostic workup would you order?
Section 4

Hereditary and nongenetic disorders were suspected. The differential was broadened to include tuberous sclerosis, cerebral autosomal-dominant/recessive arteriopathy with subcortical infarcts and leukoencephalopathy, neuronal intranuclear inclusion disease (NIID), fragile-X syndrome, and other genetic disorders with cognitive and psychiatric symptoms. Physical examination did not reveal hypopigmented macules or angiofibromas. The whole-exome sequencing results were normal. NIID was excluded from the muscle biopsy.

For nongenetic diseases, metabolic, toxic, infective, and autoimmune etiologies were suspected. Thyroid ultrasound and thyroid function tests were normal as was tandem mass spectrometry for organic acids, amino acids, and acylcarnitine. Biochemical tests for arylsulfatase A, galactocerebrosidase, galactosidase, hexosaminidase, and metabolic screening were normal. The patient had no history of toxic exposures. For limbic encephalitis, the patient refused PCR for viral, para-neoplastic, and autoimmune encephalitis antibodies.

Given the patient’s young age of onset, evidence of possible congenital disease, particularly the parents’ medical history, was pursued. Further history revealed that both of her parents had a history of syphilis for many years. Although they were treated after being diagnosed with syphilis, they were rarely retested for syphilis antibodies later. Further laboratory tests of the patient revealed positive rapid plasma regain (RPR) and Treponema pallidum particle agglutination assay (TPPA) tests. Based on a positive finding for her blood syphilis antibodies, neurosyphilis was suspected. A lumbar puncture revealed positive fluorescent treponemal antibody absorption, TPPA, and RPR tests, with elevated leukocyte counts and protein levels (Table). Tests for human immunodeficiency virus 1 and 2 antibodies were negative. The patient had no history of sexual activity or drug use. The diagnosis of neurosyphilis was established.

Questions for Consideration:
1. Can a neurosyphilis diagnosis explain all patient’s symptoms?
2. What subtype of neurosyphilis does this patient have?
3. How would you manage this patient?

Table: Values of CSF and Blood Before and After Treatment

<table>
<thead>
<tr>
<th>Values</th>
<th>Before treatment (June 29, 2018)</th>
<th>After treatment (July 17, 2018)</th>
<th>Reference range</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSF values</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure (mm H₂O)</td>
<td>175</td>
<td>120</td>
<td>80–180</td>
</tr>
<tr>
<td>Protein (mg/dL)</td>
<td>96.9</td>
<td>56.6</td>
<td>15–45</td>
</tr>
<tr>
<td>Leukocyte ×10⁶/L</td>
<td>60</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Erythrocyte ×10⁶/L</td>
<td>10</td>
<td>12</td>
<td>0–5</td>
</tr>
<tr>
<td>Glucose (mmol/L)</td>
<td>2.3</td>
<td>2.3</td>
<td>2.5–4.4</td>
</tr>
<tr>
<td>Chloride (mmol/L)</td>
<td>128</td>
<td>127</td>
<td>120–130</td>
</tr>
<tr>
<td>CSF culture</td>
<td>No growth</td>
<td>No growth</td>
<td>No growth</td>
</tr>
<tr>
<td>FTA-ABS IgG</td>
<td>Reactive</td>
<td>Nonreactive</td>
<td>Not detected</td>
</tr>
<tr>
<td>FTA-ABS IgM</td>
<td>Nonreactive</td>
<td>Nonreactive</td>
<td>Not detected</td>
</tr>
<tr>
<td>RPR tier</td>
<td>1:8</td>
<td>1:2</td>
<td>Not detected</td>
</tr>
<tr>
<td>TPPA</td>
<td>Reactive</td>
<td>Reactive</td>
<td>Not detected</td>
</tr>
<tr>
<td>Blood values</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FTA-ABS IgG</td>
<td>Reactive</td>
<td>Reactive</td>
<td>Not detected</td>
</tr>
<tr>
<td>FTA-ABS IgM</td>
<td>Reactive</td>
<td>Weakly reactive</td>
<td>Not detected</td>
</tr>
<tr>
<td>RPR tier</td>
<td>1:128</td>
<td>1:64</td>
<td>Not detected</td>
</tr>
<tr>
<td>TPPA</td>
<td>Reactive</td>
<td>Reactive</td>
<td>Not detected</td>
</tr>
</tbody>
</table>

Abbreviations: FTA-ABS = fluorescent treponemal antibody absorption; Ig = immunoglobulin; RPR = rapid plasma regain; TPPA = Treponema pallidum particle agglutination assays.
Section 5

Neurosyphilis is a chronic infectious disease caused by invading *T. pallidum* into the CSF. Neurosyphilis is divided into early (asymptomatic neurosyphilis and syphilitic meningitis), early or late (meningovascular syphilis), and late forms (general paresis and tabes dorsalis).6 Syphilitic meningitis was excluded because the patient had no headache, meningismus, photophobia, or cranial nerve palsies.6 Meningovascular syphilis and tabetic neurosyphilis were excluded without brain ischemia or spinal cord injury lesions.6 General paresis mainly manifests as progressive dementia, psychiatric syndromes, personality changes, mania, delusions, tremors, and dysarthria (characterized by halting and syllabic repetition).6 Although the possible signs of late neurosyphilis such as Argyle-Robertson pupils, Romberg sign, and posterior spinal involvement were not present in the neurologic examination, the diagnosis of general paresis was clear based on the patient’s decreased cognitive function, personality and behavioral abnormalities, and abnormal laboratory testing. Penicillin was administered for 2 weeks, and her MoCA score improved from 12 to 19 and her MMSE score from 19 to 24. The patient’s orientation to time and space as well as her ability to communicate also improved. No Jarisch-Herxheimer reaction developed. A second lumbar puncture was performed, and the results are presented in Table 1. We recommended a neurologic examination and lumbar puncture after 3 months, but the patient was lost to follow-up.

Discussion

Syphilis is a highly contagious, sexually and transplacentally transmitted disease caused by *T. pallidum*. In 2016, over 6.3 million new syphilis cases were diagnosed globally.7 Syphilis screening is important for low-income and middle-income countries, but pregnant women in some rural and poor areas of China are not tested because of cost and transportation problems.8

Our patient denied engaging in sexual activity, but her parents had syphilis for decades. Congenital syphilis was suspected because her mother had no prenatal care or treatment for syphilis before delivery. Only a few patients with congenital syphilis of juvenile general paresis have been reported in the past century.9

Clinical manifestations of neurosyphilis are mainly related to the injury’s location. In earlier stages of infection, *T. pallidum* affects the meninges, cerebral vessels, and CSF, causing meningeal and meningovascular syphilis. General paresis and tabetic neurosyphilis occur in the late stages. Neurosyphilis can present with ocular and auditory abnormalities10 and syphilitic gummas.11

A neurosyphilis diagnosis depends on neurologic symptoms and signs, as well as serum and CSF testing for *T. pallidum*. No specific radiologic neurosyphilis manifestations have been identified, but generalized cerebral atrophy and foci of increased signal intensity are common on MRI of the brain.12 Contrast enhancement, cerebral infarction, and edema are also commonly seen on MRI of the brain.13 A few neurosyphilis cases with bilateral temporal lobe high signal intensity, mimicking herpes simplex virus and limbic encephalitis, have been reported.

For assessing cognitive function in late adolescents, an appropriate scale covering a wide range of cognitive domains is lacking. MoCA has been increasingly used in recent years for cognitive assessment in late adolescents (14 years or older) due to its facile administration in clinical settings, wide coverage of domains necessary for cognitive assessment in adolescents, and sensitivity in detecting mild cognitive deficits.14 The MMSE is suitable for analyzing cognitive function in children and adolescents 4 years and older.15 Our patient was very close to adulthood and was about to graduate from high school; therefore, we chose to use the MoCA and MMSE.

This interesting case highlights the presentation of congenital syphilis and neurosyphilis in an adolescent and highlights the importance of cognitive function and the relevant differential diagnoses in an adolescent with cognitive impairment.

Acknowledgment

We thank the patient for participating in the study. We thank the neurologist Ming Ren (Shanghai Blue Cross Brain Hospital) for his help in polishing the manuscript. We also thank Home for Researchers editorial team (home-for-researchers.com) for language editing service.

Study Funding

No targeted funding reported.

Disclosure

The authors report no relevant disclosures. Go to Neurology.org/N for full disclosures.

Publication History

Received by Neurology October 20, 2022. Accepted in final form May 15, 2023. Submitted and externally peer reviewed. The handling editor was Resident and Fellow Deputy Editor Katherine Fu, MD.

Appendix Authors

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bo Zhao, MM</td>
<td>Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing; The Second School of Clinical Medicine, Southern Medical University, Guangzhou; Department of Hyperbaric Oxygen, Sixth Medical Center of Chinese PLA General Hospital, Beijing, China</td>
<td>Drafting/review of the manuscript for content, including medical writing for content; major role in the acquisition of data; analysis or interpretation of data</td>
</tr>
</tbody>
</table>

Continued
References

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zonghong Zhu, MD</td>
<td>Department of Emergency, Sixth Medical Center of Chinese PLA General Hospital, Beijing, China</td>
<td>Drafting/revision of the manuscript for content, including medical writing for content; major role in the acquisition of data; analysis or interpretation of data</td>
</tr>
<tr>
<td>Jinjing Zhao, MD</td>
<td>Department of Neurology, The 305th Hospital of the People’s Liberation Army, Beijing, China</td>
<td>Drafting/revision of the manuscript for content, including medical writing for content</td>
</tr>
<tr>
<td>Miao Yang, MM</td>
<td>The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China</td>
<td>Drafting/revision of the manuscript for content, including medical writing for content</td>
</tr>
<tr>
<td>Yimo Zheng, MD, PhD</td>
<td>Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China</td>
<td>Analysis or interpretation of data</td>
</tr>
<tr>
<td>Hang Li, MD, PhD</td>
<td>Department of Hyperbaric Oxygen, Sixth Medical Center of Chinese PLA General Hospital, Beijing, China</td>
<td>Drafting/revision of the manuscript for content, including medical writing for content</td>
</tr>
<tr>
<td>Shuyi Pan, MD, PhD</td>
<td>The Second School of Clinical Medicine, Southern Medical University, Guangzhou; Department of Hyperbaric Oxygen, Sixth Medical Center of Chinese PLA General Hospital, Beijing, China</td>
<td>Drafting/revision of the manuscript for content, including medical writing for content</td>
</tr>
<tr>
<td>Xiaokun Qi, MD, PhD</td>
<td>Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China</td>
<td>Major role in the acquisition of data</td>
</tr>
<tr>
<td>Yingxin Yu, MD, PhD</td>
<td>Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China</td>
<td>Drafting/revision of the manuscript for content, including medical writing for content; major role in the acquisition of data; study concept or design; analysis or interpretation of data</td>
</tr>
</tbody>
</table>
Clinical Reasoning: A 17-Year-Old Girl With Progressive Cognitive Impairment
Bo Zhao, Zonghong Zhu, Jinjing Zhao, et al.
Neurology 2023;101:e1466-e1472 Published Online before print July 25, 2023
DOI 10.1212/WNL.0000000000207597

This information is current as of July 25, 2023

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/101/14/e1466.full

References
This article cites 15 articles, 1 of which you can access for free at:
http://n.neurology.org/content/101/14/e1466.full#ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Cognitive Disorders/Dementia
http://n.neurology.org/cgi/collection/all_cognitive_disorders_dementia
All Movement Disorders
http://n.neurology.org/cgi/collection/all_movement_disorders
All Neuropsychology/Behavior
http://n.neurology.org/cgi/collection/all_neuropsychology_behavior
MRI
http://n.neurology.org/cgi/collection/mri

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise