A newborn who was diagnosed with congenital clubfeet in utero using ultrasound was born with a human tail (Figure 1A). Clinical examination revealed a pigmented stain and a pilonidal dimple above the tail (Figure 1B). No neurologic dysfunction was noted, and the reflexes were intact. In view of Figure 2 MRI of the Lumbar Spine

Sagittal T1-weighted (A) and T2-weighted with fat-sat (B) images show a terminal intraspinal lipoma (arrow) attached to the conus medullaris (arrowhead). The cord is tethered at L5-S1 level. There is also a central cystic dilation in the spinal cord (asterisk) consistent with a hydrosyringomyelic cavity. Axial T2-weighted images at S2/S3 level (C) demonstrating defect of fusion of posterior arches (arrow) and Co2/Co3 level (D) showing tubular appendage composed of subcutaneous fat tissue and covered by skin, emerging in the paramedian sacrococcygeal region, compatible with the tail (arrow).
the presence of tail/dimple, MRI of the spine was performed which showed occult spinal dysraphism, a tethered cord caused by an intradural lipoma and a hydrosyringomyelic cavity (Figure 2). The patient underwent surgery (Figure 3) to excise the intradural lipoma and the human tail.

Patients with cutaneous stigmata such as a dimple, pigmented stain, skin appendage, or asymmetric gluteal cleft should be investigated radiographically with ultrasound or MRI for underlying spinal cord abnormalities such as spinal dysraphism and spinal cord tethering, even in cases without neurologic symptoms. While tail position tends to correlate with underlying etiology, the cause may vary dramatically.

Acknowledgment
Special thanks to Suzana Serra for the surgery image courtesy.

Author Contributions
A.F.V.M. Silva: drafting/revision of the manuscript for content, including medical writing for content; major role in the acquisition of data; analysis or interpretation of data. L.C. Araújo: drafting/revision of the manuscript for content, including medical writing for content; major role in the acquisition of data; analysis or interpretation of data.

Study Funding
No targeted funding reported.

Disclosure
The authors report no relevant disclosures. Go to Neurology.org/N for full disclosures.

Publication History
Received by Neurology September 7, 2022. Accepted in final form January 25, 2023. Submitted and externally peer reviewed. The handling editor was Resident and Fellow Deputy Editor Ariel Lyons-Warren, MD, PhD.

References
Teaching NeuroImage: Presence of a Human Tail in an Infant With Spinal Dysraphism and Congenital Clubfeet

Amanda Fernandes Vieira Mendes Silva and Luziany Carvalho Araújo

Neurology 2023;101:e345-e346 Published Online before print March 6, 2023
DOI 10.1212/WNL.0000000000207172

This information is current as of March 6, 2023

<table>
<thead>
<tr>
<th>Updated Information & Services</th>
<th>including high resolution figures, can be found at: http://n.neurology.org/content/101/3/e345.full</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
<td>This article cites 2 articles, 0 of which you can access for free at: http://n.neurology.org/content/101/3/e345.full#ref-list-1</td>
</tr>
<tr>
<td>Subspecialty Collections</td>
<td>This article, along with others on similar topics, appears in the following collection(s): MRI http://n.neurology.org/cgi/collection/mri</td>
</tr>
<tr>
<td>Permissions & Licensing</td>
<td>Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: http://www.neurology.org/about/about_the_journal#permissions</td>
</tr>
<tr>
<td>Reprints</td>
<td>Information about ordering reprints can be found online: http://n.neurology.org/subscribers/advertise</td>
</tr>
</tbody>
</table>

Neurology © is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright © 2023 American Academy of Neurology. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.