A 17-year-old man with neuronal ceroid lipofuscinosis (NCL) type 2 (CLN2) had an EEG. Photoparoxysmal response (PPR) was seen at 2 Hz (Figure). PPR refers to generalized spike-wave discharges elicited by intermittent photic stimulation (IPS) and may occur in epilepsy syndromes including juvenile myoclonic epilepsy and Dravet syndrome.1,2 However, low-frequency (<5 Hz) PPR (LFPPR) is only reported in a few conditions, including Lafora disease, mitochondrial disorders, Creutzfeldt-Jakob disease, and NCL, most frequently CLN2, CLN5, and CLN6.1,2 NCL is a group of progressive neurodegenerative disorders characterized by developmental impairment, cognitive decline, seizures, progressive visual impairment, and motor dysfunction. Neuroimaging features include progressive cerebral and cerebellar atrophy and thalamic and periventricular white matter signal abnormalities. IPS is an important test as identification of LFPPR could enable early NCL diagnosis, which is critical given that early administration of enzyme replacement therapy can reduce the rate of disease progression.

Study Funding
The authors report no targeted funding.
Disclosure
The authors report no relevant disclosures. Go to Neurology.org/N for full disclosures.

Author Contributions
A. Mirchi: drafting/revision of the manuscript for content, including medical writing for content; major role in the acquisition of data; study concept or design; analysis or interpretation of data.
K. Myers: drafting/revision of the manuscript for content, including medical writing for content; major role in the acquisition of data; study concept or design; analysis or interpretation of data.

Publication History
Received by Neurology October 29, 2022. Accepted in final form February 22, 2023. Submitted and externally peer reviewed. The handling editor was Resident & Fellow Deputy Editor Ariel Lyons-Warren, MD, PhD.

References
Teaching NeuroImage: Low-Frequency Photoparoxysmal Response in a Patient With Neuronal Ceroid Lipofuscinosis Type 2
Amytice Mirchi and Kenneth A. Myers
Neurology 2023;101;e459-e460 Published Online before print April 17, 2023
DOI 10.1212/WNL.0000000000207271

This information is current as of April 17, 2023

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/101/4/e459.full

References
This article cites 2 articles, 0 of which you can access for free at:
http://n.neurology.org/content/101/4/e459.full#ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Genetics
http://n.neurology.org/cgi/collection/all_genetics
EEG; see Epilepsy/Seizures
http://n.neurology.org/cgi/collection/eeg_see_epilepsy-seizures
Metabolic disease (inherited)
http://n.neurology.org/cgi/collection/metabolic_disease_inherited

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise

Neurology is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright © 2023 American Academy of Neurology. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.