A 5-year-old typically developing boy presented with a 4-week history of moving his head to follow objects due to inability to move his eyes side to side. His neurologic examination was normal except for this inability to voluntarily move his eyes horizontally, consistent with oculomotor apraxia (Video 1). MRI of the brain showed pontine mass suggestive of diffuse high-grade glioma (DIPG) (Figure). The patient underwent radiotherapy, and a ventriculoperitoneal shunt was placed for hydrocephalus.

In pediatric patients, oculomotor apraxia may be seen in ataxia with oculomotor apraxia, Cogan syndrome, Joubert syndrome, and ataxia telangiectasia. In our case, the brainstem tumor disrupted the structural connectivity between the frontal eye fields and oculomotor network including the pons, the superior colliculus, and caudate nucleus leading to oculomotor apraxia. DIPG is an aggressive pediatric tumor with a median survival of 9–12 months. It classically presents with cranial nerve palsies, long tract signs, and ataxia.

Author Contributions
F. Thabet: drafting/revision of the manuscript for content, including medical writing for content. Mohammed Sawahreh: drafting/revision of the manuscript for content, including medical writing for content. D. Thaher: major role in the acquisition of data. F.A. Maadid: major role in the acquisition of data.

Study Funding
The authors report no targeted funding.
Disclosure
The authors report no relevant disclosures. Go to Neurology.org/N for full disclosures.

Publication History
Received by Neurology December 13, 2022. Accepted in final form March 20, 2023. Submitted and externally peer reviewed. The handling editor was Resident & Fellow Section Deputy Editor Ariel Lyons-Warren, MD, PhD.

References
Teaching Video NeuroImage: Oculomotor Apraxia as the Only Presentation of Diffuse Intrinsic Pontine Glioma
Farouq Thabet, Mohammed Sawahreh, Dana Thaher, et al.
Neurology 2023;101:e854-e855 Published Online before print April 25, 2023
DOI 10.1212/WNL.0000000000207376

This information is current as of April 25, 2023

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/101/8/e854.full

References
This article cites 2 articles, 0 of which you can access for free at:
http://n.neurology.org/content/101/8/e854.full#ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Neuro-ophthalmology
http://n.neurology.org/cgi/collection/all_neuroophthalmology
All Pediatric
http://n.neurology.org/cgi/collection/all_pediatric
MRI
http://n.neurology.org/cgi/collection/mri
Ocular motility
http://n.neurology.org/cgi/collection/ocular_motility
Primary brain tumor
http://n.neurology.org/cgi/collection/primary_brain_tumor

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise