This report reviews the clinical uses of surface electromyography (SEMG) as a diagnostic tool for neurologic disorders. SEMG is assessed with regard to the evaluation of patients with neuromuscular diseases, low back pain, and disorders of motor control. This broadens the scope of a previous assessment of SEMG in neurologic practice by the American Association of Electrodiagnostic Medicine in which its utility was examined with regard to neuromuscular diseases only.

Needle electromyographic evaluation (NEMG), in combination with nerve conduction studies, is the gold standard methodology for assessing the neurophysiologic characteristics of neuromuscular diseases. Moreover, fine-wire EMG (FWEMG) often has been used in the evaluation of gait disorders, kinesiologic studies, and research and is also considered a standard. Nevertheless, NEMG and FWEMG are both invasive and painful, and this limits their use when activity from several muscles needs to be monitored simultaneously.

SEMG is a technique to measure muscle activity noninvasively using surface electrodes placed on the skin overlying the muscle. SEMG differs from NEMG and FWEMG with respect to technical requirements and electrical properties. Unlike NEMG, SEMG electrodes record from a wide area of muscle territory, have a relatively narrow frequency band (range, 20 to 500 Hz), have low-signal resolution, and are highly susceptible to movement artifact. SEMG electrodes typically are approximately 10 mm in diameter and usually are passive (i.e., they are simple conductive surfaces requiring low skin resistance). They can, however, be active, incorporating preamplifier electronics that lessen the need for low skin resistance and improve the signal-to-noise ratio. SEMG can record both voluntary and involuntary muscle activity in addition to externally stimulated muscle action potentials such as motor evoked potentials after central or peripheral nerve stimulation. SEMG has also been used in several non-neurologic settings such as obstetric monitoring and animal research, but these potential applications are beyond the scope of this review.

More than 2500 original articles, reviews, and books were examined to determine the scope of SEMG utility, its benefits and risks, and the extent to which SEMG techniques vary, and to assess SEMG’s strengths and weaknesses for specific clinical applications. Manual and computerized literature searches from the National Library of Medicine were used to obtain the articles. Key words used included SEMG, spontaneous activity, fasciculation, myopathy, muscle fiber conduction, motor unit estimation, fatigue, low-back pain, tremor, movement disorders, reaction time, and psychophysics. Representative articles are cited and listed at the end of this article. Other key words relating to neuromuscular diseases (other than when cross-referenced with SEMG) were not searched for specifically because this topic was the focus of the earlier AAEM assessment and was not the main focus of the current paper.

Neuromuscular diseases. No original article or review article has suggested that SEMG is better or even equivalent to NEMG in providing evidence of denervation at rest. This is because of the limited spatial resolution of SEMG that results in poor fidelity recordings of high-frequency signals such as polyphasic potentials, fibrillation potentials, and positive sharp waves. In addition, because of electrical cross-talk, SEMG cannot identify the origin of the electrical signal when two or more muscles, which lie in close proximity to each other, are active simultaneously. Furthermore, the electrical signals in SEMG recordings are often attenuated by intervening soft tissue, particularly when the active muscle is 10 mm or more below the skin surface. Insertional activity, another important measure in the evaluation of neuromuscular disease, cannot be evaluated by SEMG for the self-evident reason that SEMG is noninvasive.

Some studies have proposed that SEMG may be a useful adjunct in the evaluation of fasciculation, particularly in the assessment of patients with neuromuscular disease. In a review of 116 patients with a variety of neuromuscular conditions, including, among others, motor neuron disease (n = 43), neuropathy (n = 14), myelopathy or radiculopathy (n
During sustained muscle contraction, SEMG signals undergo a spectral shift to lower frequencies. This spectral shift has been suggested, but not convincingly established, to provide an index of muscle fatigue. It is not known whether there are other causes of similar spectral shifts. Some spectral parameters such as the mean, mode, and median frequency are known to decrease continuously after the onset of muscle contraction. It may, therefore, be possible to monitor the fatiguing process early in contraction before the point of mechanical failure has been reached.
Twelve patients with a history of chronic low back pain (average duration, 15.2 years) were compared to 12 control subjects in a two-group, stepwise discriminant analysis using the median spectral frequency of muscle contraction. Spectral frequency was determined at three contraction force levels: 40%, 60%, and 80% of maximal voluntary contraction (MVC). At 40% MVC, the discriminant analysis correctly classified 92% of the low back pain group and 82% of the control group. At 80% MVC, analysis correctly classified 84% of the low back pain group and 91% of control subjects. At 60% MVC, however, classification was poor (67% in the control group, 75% in the low back pain group). In addition, this particular discriminant function was not verified on an independent sample of patients and controls. Such inconclusive or incomplete findings are characteristic of most studies in this area, possibly related to external factors such as motivation bias, body movement, and electrode placement, each of which can adversely affect these measurements.

In an attempt to address some of these issues, 27 patients with chronic low back pain of more than 6 months were divided into “avoiders” (i.e., those who reduced physical and social activities to cope with the pain) and “confronters” (i.e., those who remained active despite their back pain) and compared to 22 control subjects. Discriminant analysis correctly classified 88.9% of the avoiders but did less well with confronters. The relevance of these findings to clinical issues, however, is unclear and, again, the findings were not replicated in an independent sample.

Among rowers with and without low back pain, discriminant analysis was able to correctly classify all 6 patients and 14 (93%) of 15 without low back pain. Similarly, when the same methodology is applied, 25 rowers were examined: 8 with and 17 without low back pain. The percentage of recovery in the median spectral frequency at 1 minute and at 2 minutes after a 30-second contraction (80% MVC) was applied to a discriminant analysis, which correctly classified from 88% to 100% of both groups. More important, however, is that the similarity of the discriminant functions used in these two studies is not known, so these two studies cannot be considered replications of each other.

In an attempt to correlate pain with changes in SEMG spectral frequency, 403 nurses without any serious low back pain history were prospectively evaluated. At baseline, spectral parameters were measured during a 28-second muscle contraction at 80% MVC. A decline in the median SEMG spectral frequency was associated with a greater probability of subjects having low back pain develop in the future. In a related study, mixed results were found regarding the reliability of SEMG spectral parameters. In this study, muscle function of the multifidus and iliocostalis was evaluated in the prone position (trunk holding test) in 12 normal subjects. Two trials were performed in two testing sessions over 3 days. Pearson’s product moment correlation coefficients, tests for paired data, analysis of variance of intrasubject coefficient of variation, and intraclass coefficient correlation were used as reliability measures of the initial median frequency and median frequency slope. Within-day reliability and between-days reliability of the initial median frequency recorded in the multifidus and iliocostalis were good (Pearson’s $r = 0.74$ to 0.94), but median frequency slope reliability measurements were less stable compared with the initial median frequency (Pearson’s $r = 0.39$ to 0.55). These findings imply that the basis for SEMG determination of low back pain may not be reliable.

In addition, several considerations make the reported SEMG findings in low back pain of doubtful clinical value. First, although muscle fatigue is thought to be related to the development of low back pain and is associated with changes in SEMG spectral frequency, the relationship between the two is uncertain. Second, it is unclear what other factors may influence spectral frequency, making the specificity of the SEMG findings in this clinical setting unclear. Third, many of the reports use discriminant functions based on case-control studies, which have not been verified on independent samples of patients and control subjects. Fourth, the actual discriminant functions used have differed between reports. Fifth and finally, even if the reports are accepted at face value, the findings suggest only that SEMG can identify patients who have low back pain. Presumably, the gold standard is the clinical history and, in this circumstance, it would be easier and cheaper simply to ask the patient whether his or her back hurts (unless the patients are malingering and one wishes to determine whether the patient truly has low back pain). A more useful clinical application of this technique would be to distinguish patients with nerve root compression syndromes from those with back pain due to other causes, but this question has not been addressed by the studies to date.

In summary, based on Class III and inconclusive or inadequate Class II data, SEMG is considered unacceptable as a clinical tool in the evaluation of patients with low back pain at this time (Type E recommendation).

Kinesiology and disorders of motor control. There are several applications of SEMG in which this technique is considered standard. For example, the use of SEMG recordings is routinely used to measure nerve conduction velocities after electrical stimulation of a peripheral nerve. Similarly, SEMG is the standard for recording compound muscle action potentials after magnetic stimulation either transcranially or peripherally. SEMG has been used for decades as a technique for studying human motion, for recording EMG signals from multiple muscles in other clinical settings, and for monitoring response times in experimental circumstances. Indeed, because of the noninvasive and painless nature of the method, this should be considered a standard application of SEMG (often superior to either NEMG or FWEMG), although the precise clinical utility of such recordings in these latter circumstances remains to be defined. Few articles in this area critically compare SEMG with other methods of recording muscle activity and rarely is a gold standard (e.g., NEMG, imaging studies, or muscle biopsies) identified. The reason for this is twofold. First, there is no adequate gold
standard for movement analyses. Second, the technique of SEMG is not usually in question but merely used as a tool within the scope of a larger testing goal.

The neurophysiologic analysis of movement disorders, particularly tremor, myoclonus, dystonia, and dyskinesia, typically is studied using SEMG rather than NEMG or FWEMG. An important reason for this is that the mean rectified SEMG signal, as opposed to the NEMG or FWEMG signal, varies linearly with the force generated at constant length as well as during constant velocity contractions. This linear relationship remains true even in fatigued or diseased muscle, thus facilitating interpretation of SEMG data as they relate to muscle force generation. Another important advantage to SEMG in this setting is that it allows prolonged recordings of muscle activity from multiple sites simultaneously.

Surface electromyography may be used to classify movement disorders through measurement of frequency and amplitude of muscle activity, and its relationship to separately recorded limb or truncal movement or force. This is based on Class III evidence as most reports are formulated from expert opinion, nonrandomized historical control subjects, and observations from case series. These Class III studies show that many tremor disorders reveal distinct muscle activity patterns (e.g., orthostatic tremor) such that SEMG data can be helpful diagnostically. SEMG can provide information about motor unit recruitment and synchronization with the tremor activity and can also determine the relationship of involved muscles to tremor movements and reveal whether antagonists (such as wrist flexors and extensors) discharge simultaneously or alternately to produce the tremor. Differentiating tremor from myoclonus, spasmodic torticollis from other head tremors, and primary writing tremor from writer’s cramp and identifying spread of muscle activity and origin of muscle activity in propriospinal myoclonus are other potentially important clinical applications of SEMG. SEMG is also useful in the analyses of movement disorders in which prolonged recordings must be pain-free and interfere minimally with the clinical phenomenology.

Rhythmic EMG signals containing bursts of activity, as in chewing, walking, and breathing, can be analyzed using SEMG and automated burst detection methods. These have an advantage in that large amounts of SEMG data can be processed easily and objectively. Multiple cycles of movement may be recorded and averaged patterns of muscle activation and joint movements determined. Psychophysical measurements, such as movement and reaction time analysis, requiring precise timing of muscle contraction onset benefit from SEMG as a noninvasive tool for this purpose. Without SEMG, painful intramuscular insertion of an NEMG or FWEMG electrode would be required to determine the onset of movement, adversely interfering with the psychophysical measurements under analysis.

In summary, based on Class III evidence, SEMG is considered an acceptable tool for kinesiologic analysis of movement disorders because it is a method for recording and quantifying clinically important muscle-related activity with the least interference on the clinical picture. SEMG may also be useful in differentiating the many types of tremors, myoclonus, and dystonia; for evaluating gait and posture; and for evaluating psychophysical measurements of reaction and movement time (Type C recommendation).

Conclusions
1. Based on Class II data, SEMG is considered unacceptable as a clinical tool in the diagnosis of neuromuscular disease at this time (Type E recommendation).
2. Based on Class III data and inconclusive or inadequate Class II data, SEMG is considered unacceptable as a clinical tool in the diagnosis of low back pain at this time (Type E recommendation).
3. Based on Class III data, SEMG is considered an acceptable tool for kinesiologic analysis of movement disorders; for differentiating types of tremors, myoclonus, and dystonia; for evaluating gait and posture disturbances; and for evaluating psychophysical measures of reaction and movement time (Type C recommendation).

Further studies comparing specificity and sensitivity of FWEMG with SEMG are to be encouraged.

Disclaimer. This statement is provided as an educational service of the American Academy of Neurology. It is based on an assessment of current scientific and clinical information. It is not intended to include all possible proper methods of care for a particular neurologic problem or all legitimate criteria for choosing to use a specific procedure. Neither is it intended to exclude any reasonable alternative methodologies. The AAN recognizes that specific patient care decisions are the prerogative of the patient and the physician caring for the patient, based on all of the circumstances involved.

Acknowledgments
The AAN TTA thanks Seth L. Pullman, MD, FRCPC, for his service to the Academy’s membership as the lead author of this practice parameter; Anne Marini, MD, PhD, and Douglas S. Goodin, MD, for facilitating this project; and Anthony I. Marquinez, MD, Samer Tabbal, MD, and Michael Rubin, MD, for providing their expertise, time, and insight into the development of this document.

The AAN also thanks the numerous individuals, AAN Sections, and organizations that reviewed drafts of this practice parameter, including the American Association of Electrodiagnostic Medicine, Child Neurology Section, Clinical Neurophysiology Section,
Appendix 1

American Academy of Neurology Therapeutics and Technology Assessment Subcommittee members: Douglas S. Goodin, MD (Chair); Elliot Mark Frohman, MD, PhD; Robert Goldman, MD; John Ferguson, MD; Philip B. Gorelick, MD, MPH; Chung Hsu, MD, PhD; Andres Kanner, MD; Anne Marini, MD, PhD; Carmel Armon, MD; David Hammond, MD; David Lefkowitz, MD; and Edward Westbrook, MD.

Appendix 2

Quality of evidence ratings
Class I. Evidence provided by one or more well-designed clinical studies of a diverse population using a “gold standard” reference test in a blinded evaluation appropriate for the proposed diagnostic application.
Class II. Evidence provided by one or more clinical studies of a restricted population using a reference test in a blinded evaluation of diagnostic accuracy.
Class III. Evidence provided by expert opinion, nonrandomized historical controls, or observation(s) from case series.

Definitions
Safe. A judgment of the acceptability of risk in a specified situation, e.g., for a given medical problem, by a provider with specified training, at a specified type of facility.
Effective. Producing a desired effect under conditions of actual use.
Established. Accepted as appropriate by the practicing medical community for the given indication in the specified patient population.
 Possibly useful. Given current knowledge, this technology appears to be appropriate for the given indication in the specified patient population. If more experience and long-term follow-up are accumulated, this interim rating may change.
Investigational. Evidence insufficient to determine appropriateness, warrants further study. Use of this technology for given indication in the specified patient population should be confined largely to research protocols.
Doubtful. Given current knowledge, this technology appears to be inappropriate for the given indication in the specified patient population. If more experience and long-term follow-up are accumulated, this interim rating may change.
Unacceptable. Regarded by the practicing medical community as inappropriate for the given indication in the specified patient population.

Suggested strength of recommendations
Type A. Strong positive recommendations, based on Class I evidence, or overwhelming Class II evidence when circumstances preclude randomized clinical trials.
Type B. Positive recommendation, based on Class II evidence.
Type C. Positive recommendation, based on strong consensus of Class III evidence.
Type D. Negative recommendation, based on inconclusive or conflicting Class II evidence.
Type E. Negative recommendation, based on evidence of ineffectiveness or lack of efficacy, based on Class II or Class I evidence.
Type O. Insufficient data to make a recommendation.

References

32. Ng JK, Richardson CA, Jull GA. Electromyographic amplitude and frequency changes in the iliocostalis lumborum and multifidus muscles during a trunk holding test. Phys Ther 1997;77:954–961.

Clinical utility of surface EMG [RETIRED]: Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology

Neurology 2000;55:171-177
DOI 10.1212/WNL.55.2.171

This information is current as of July 25, 2000

<table>
<thead>
<tr>
<th>Updated Information & Services</th>
<th>Including high resolution figures, can be found at:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>http://n.neurology.org/content/55/2/171.full</td>
</tr>
<tr>
<td>Citations</td>
<td>This article has been cited by 1 HighWire-hosted articles:</td>
</tr>
<tr>
<td></td>
<td>http://n.neurology.org/content/55/2/171.full##otherarticles</td>
</tr>
<tr>
<td>Permissions & Licensing</td>
<td>Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:</td>
</tr>
<tr>
<td></td>
<td>http://www.neurology.org/about/about_the_journal#permissions</td>
</tr>
<tr>
<td>Reprints</td>
<td>Information about ordering reprints can be found online:</td>
</tr>
<tr>
<td></td>
<td>http://n.neurology.org/subscribers/advertise</td>
</tr>
</tbody>
</table>