Consequently received “triple-H” therapy (hemodilution, hypertension, hypervolemia), which led to stabilization of her hemodynamic situation. Cerebral blood flow velocities were monitored by Doppler sonography and gradually normalized over 18 days. An MRI/MRA study at day 90 did not show any pathology at the extra- or intracranial vessels (see the figure, B); neurologic symptoms at day 90 were slight expressive aphasia and a right-sided central peroneal nerve paresis.

Discussion. Cerebral ergotism, i.e., an isolated vasospasm only at the supra-aortal vessels, is very rare. We found only 12 cases in the literature. In these case reports, cerebral ergotism was due to chronic abuse, overdose, or individual oversensitivity. In our case, the combination of ergotamine taken in normal dosage with ritonavir appeared to cause cerebral ergotism. To our knowledge, this association has not been described before. However, acute ergotism characterized by peripheral vasospasm and ischemia of the extremities with the concurrent administration of ergotamine and ritonavir has been shown in several case reports and the combination of the two agents is contraindicated as per the Physician’s Desk Reference.

This particular case also shows that the use of ergotamine to treat patients receiving ritonavir must be avoided because of possible complications. Moreover, our case illustrates that headache can be a side effect of ritonavir treatment itself and should be treated with nonsteroidal antirheumatic agents.

From the Departments of Neurology (Drs. Spiegel, Schmidauer, Kappf, and Poege) and Dermatology and Venereology (Dr. Scarletti), University Hospital Innsbruck, Austria.

Received February 5, 2001. Accepted in final form April 18, 2001.

Address correspondence and reprint requests to Dr. M. Spiegel, Department of Neurology, University Hospital Innsbruck, Anichstrasse 35, Innsbruck, A-6020, Austria; e-mail: michael.spiegel@uibk.ac.at

Copyright © 2001 by AAN Enterprises, Inc.

References

Figure. Contrast-enhanced sagittal T1-weighted spin echo. (A) Caput medusae within the pons (arrows). (B) Venous drainage from caput medusae to vein of Galen (arrow).

NeuroImages

Developmental venous anomaly of the pons

A. Herrero, MD, J. Martínez–San Millán, MD, PhD, J.C. Martínez–Castrillo, MD, PhD, R. Ginestal, MD, J.C. Alvarez–Cervero, MD, PhD, Madrid, Spain

A 26-year-old woman who had experienced tonic–clonic seizures since 2 years of age was admitted because of an increase in the frequency of her seizures during the last month. Neurologic examination was normal. Enhanced MRI showed a venous anomaly within the pons, which drained into the vein of Galen (figure). This malformation was asymptomatic, as in most cases. Venous angiomas are the most common cerebral vascular malformations. Their presence in the pons is quite rare. They represent a persistent fetal venous drainage caused by failure in development of a normal adult venous drainage system.1,2

Developmental venous anomaly of the pons
Neurology 2001;57:744
DOI 10.1212/WNL.57.4.744

This information is current as of August 28, 2001

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/57/4/744.full

References
This article cites 2 articles, 0 of which you can access for free at:
http://n.neurology.org/content/57/4/744.full#ref-list-1

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise