Expanding the clinical spectrum of POMT1 phenotype

Abstract—Mutations in POMT1 have been identified in Walker–Warburg syndrome and in patients with limb-girdle muscular dystrophy and mental retardation (LGMD2K). The authors report new POMT1 mutations in three unrelated children with severe motor impairment, leg hypertrophy, and mental retardation but without brain and ocular malformations. These patients are similar to LGMD2K but have earlier onset and more severe motor disability. The current findings expand the spectrum of POMT1-associated phenotypes.

NEUROLOGY 2006;66:1564–1567

A. D’Amico, MD*; A. Tessa, PhD*; C. Bruno, MD; S. Pettrini, PhD; R. Biancheri, MD; M. Pane, MD; M. Pedemonte, MD; E. Ricci, MD; A. Falace, PhD; A. Rossi, MD; E. Mercuri, MD; F.M. Santorelli, MD; and E. Bertini, MD

The congenital muscular dystrophies (CMDs) with glycosylation defects are a heterogeneous group of inherited disorders often involving brain, eyes, and muscle, characterized by an abnormally glycosylated α-dystroglycan (α-DG) and mutations in proven or putative glycosyltransferases. The complex heterogeneity of CMD with reduced α-DG is both genetic and clinical. Mutations in the same glycosyltransferase gene can be associated with different clinical phenotypes, and patients with the same clinical diagnosis may harbor mutations in different glycosyltransferases. Overlap between established nosographic entities is also possible.

Mutations in POMT1 have originally been identified in patients with Walker–Warburg syndrome (WWS, MIM 236670)—the most severe form of the genetically known CMD, characterized by cobblestone lissencephaly, neuronal migration defects and other structural brain changes, eye abnormalities, and death in early infancy. More recently, a subgroup of Turkish patients with limb-girdle muscle dystrophy, mental retardation, microcephaly, and normal MRI have been shown to carry a new POMT1 mutation (p.Ala200Pro), proposing further clinical heterogeneity.

We report POMT1 mutations in three patients with a distinct CMD phenotype characterized by early onset, severe motor disability, microcephaly, and mental retardation not associated with structural brain changes on neuroimaging.

Methods. All patients included in this study had relative leg hypertrophy and other features suggestive of CMD associated with an O-glycosylation defect. We systematically collected data regarding age and mode of onset, muscle power, pattern and severity of contractures, functional abilities, and progression of the disease. Data on cognitive function and brain MRI findings were also collected. Griffiths mental scales were used to assess neurodevelopmental abilities.

Muscle samples, obtained for diagnostic purposes after receiving parental informed consent, were processed according to standard histologic and histochemical techniques. Immunohistochemistry using the following monoclonal antibodies: anti-mouse α-DG (VIA4-1, Upstate Biotechnology, USA), and anti-mouse merosin (80-kd fragment of the M-chain, 5H2, Chemicon Inc., Temecula, CA).

Direct sequencing of the PCR-amplified exons, and their intronic flanking sequences, of the FKRP and POMT1 genes used intronic primers (oligonucleotide sequences and PCR conditions are available on request). PCR-restriction fragment length polymorphism analysis was used to confirm missense variants in POMT1 in the patients and their relatives and to exclude their occurrence in a panel of 400 normal, ethnically matched control chromosomes.

Commentary, see page 1461
Results. The table summarizes clinical and neuroimaging findings in our patients. They all had early onset of hypotonia in the neonatal period or in the first months of life. Motor milestones were grossly delayed, and none of the children has so far acquired the ability to stand unsupported (follow-up range 20 months to 14 years). On examination, they all had microcephaly, facial weakness with tendency to keep the mouth open, and a mild degree of macroglossia. They all also had relative hypertrophy and stiffness in the lower limbs, both at thigh and calf level, with some wasting in the proximal upper limbs (see figure E-1 [available on the Neurology Web Site at www.neurology.org]). All had antigravity movements in the lower limbs but only partial antigravity movements in the proximal upper limbs. Contractures were found in all of the cases, and they were more diffuse in the oldest patient (Patient 3), who also had scoliosis and rigid spine. Serum creatine kinase levels were grossly increased (15 to 30 times normal). Results of ophthalmologic examination, including ERG and fundus oculi, were normal. All patients had mental retardation ranging from moderate to severe; Patient 3 had some autistic tracts. All three patients had normal MRI for age (figure 1).

Muscle biopsies showed dystrophic changes with marked variation in fiber size, central nuclei, few necrotic and regenerating fibers, and interstitial fibrosis in all. Immunohistochemistry revealed severe defect of α-DG and variable reduction in immunolabeling of merosin (figure 2). Five novel POMT1 mutations were detected (see table), and a single mutation (p.Gly65Arg) was identified in two unrelated patients. The remaining novel variants occurred only once. Mutations affected moderately (Gly65) or highly

<table>
<thead>
<tr>
<th>Pt</th>
<th>Age/sex</th>
<th>Onset</th>
<th>Motor ability</th>
<th>CK, UI/L</th>
<th>Contractures</th>
<th>Respiratory/cardiac involvement</th>
<th>Mental retardation</th>
<th>Microcephaly</th>
<th>MRI changes</th>
<th>Genetic data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2 y/F</td>
<td>6 mo</td>
<td>Stand with orthoses</td>
<td>3,000</td>
<td>Ankles</td>
<td>No</td>
<td>Moderate</td>
<td>Yes</td>
<td>Normal</td>
<td>p.Gly65Arg, p.Arg541Stop</td>
</tr>
<tr>
<td>2</td>
<td>20 mo/M</td>
<td>2 mo</td>
<td>Sit alone</td>
<td>2,500</td>
<td>Ankles</td>
<td>No</td>
<td>Moderate</td>
<td>Yes</td>
<td>Normal</td>
<td>p.Gly65Arg, p.Gln590His</td>
</tr>
<tr>
<td>3</td>
<td>14 y/M</td>
<td>Birth</td>
<td>Sit alone</td>
<td>6,000</td>
<td>Ankles, elbows, knees</td>
<td>No</td>
<td>Severe</td>
<td>Yes</td>
<td>Normal</td>
<td>p.Ala669Thr, IVS12+1g>a (PTC)</td>
</tr>
</tbody>
</table>

Pt = patient; CK = creatine kinase.

Figure 1. Brain MRI of Patients 1 (A through C), 2 (D through F), and 3 (G through I) did not reveal any cortical or cerebellar abnormalities. A, D, and G are T1-weighted sagittal images; B, E, and H are coronal T2-weighted images; C corresponds to a T1 axial image; F and I are axial T2-weighted images.
convered residues in POMT1 orthologous protein sequences, were heterozygous in healthy parents, and they were not detected in a large set of control chromosomes. The FKRP gene was normal.

Discussion. POMT1 mutations were originally identified in children with a severe phenotype characterized by complete lissencephaly, eye malformations, and death in early infancy. A milder phenotype, consisting of a limb-girdle muscular dystrophy associated with mental retardation and microcephaly, but without eye and brain abnormalities (LGMD2K, MIM 609308), has been related to a common p.Ala200Pro mutation.6

Although our cases have a substantial clinical overlap with Turkish LGMD2K patients, they all had earlier onset and more severe motor functional impairment. The absence of structural brain and ocular abnormalities makes the clinical picture milder than WWS.

These findings confirm previous suggestions that different allelic mutations in POMT1 may result in different phenotypic severity.3,6 WWS and LGMD2K probably correspond to the extreme ends of the spectrum, and the phenotype reported in our patients likely represents an intermediate form. This condition mirrors what has already been observed in association with FKRP mutations7-9 proposing that other, as yet unknown factors may modify clinical features in patients with glycosylation defects.

The mutations in POMT1 identified in this study were all novel, and a single mutation (p.Gly65Arg) occurred in two children. Most mutations in patients with WWS result in amino acid substitution or deletion located in the highly conserved protein mannosyl transferase (PMT) and mannosyl-IP3R-RyR (MIR) domains,3 whereas the mild phenotype in Turkish patients is located in a cytoplasmic oriented domain of the protein.6 No straightforward correlations were found between the site of the mutation and the clinical phenotype in our cases. Nonetheless, we noticed that Patient 3—who was severely retarded and presented a marked motor impairment—harbored a splice site mutation, expected to produce exon skipping, in conjunction with a p.Ala669Thr variant, which is located within a transmembrane domain. In contrast, one of the two changes found in Patients 1 and 2 (p.Gly65Arg) is not as highly conserved as many other amino acids located in the PMT domain. The other allele in Patient 1 harbors a likely null allele. The relatively milder phenotype in Patient 2 as compared with Patient 3 is probably the result of the amino acid substitution (p.Gln590His), which does not disrupt any known domain.

Our findings further expand the spectrum of phenotypes associated with POMT1 mutations and confirm previous suggestions that a full screening of all the known genes responsible for “glycosylated alpha dystroglycanopathies” should be performed in subjects with phenotypes suggestive of these forms, regardless of their severity.

References
Lumbar radiculopathy due to chondrocalcinosis

G.R. Eichhorn, MD; B. Berka, MD; D. Garnhaft, MD; and T. Capellmann, MD, Lexington, KY; Mistelbach, Horn, and Vienna, Austria

A 74-year-old right-handed white man presented with acute right-sided leg pain attributable to the third lumbar root. Additionally, there were cutaneous calcifications and arthropathy of the hands. By history, he had recurrent bursitis of the right elbow. MRI revealed a space-occupying lesion at the level of the third lumbar vertebra consistent with an articular cyst (figure). Surgery was performed, followed by histologic workup. Microscopically, calcium pyrophosphate crystals were detected and van-Cossa-stain was positive.

In rheumatological conditions, such as pseudogout, with radicular symptoms, the differential diagnosis should include non-disk related causes, such as arthropathy.¹ ²

Copyright © 2006 by AAN Enterprises, Inc.

Disclosure: The authors report no conflicts of interest.

Address correspondence and reprint requests to Dr. Gerald R. Eichhorn, Neurology Section, Lexington Clinic, 1401 Harrodsburg Road, Suite A-500, Lexington, KY 40504; e-mail: eichhornus@yahoo.com

Figure. Sagittal T2-weighted magnetic resonance image shows a hypointense lesion with intraspinal extradural location of approximately 1.8 cm in diameter at the level of L3 with distinct encroachment of the spinal canal, likely originating from a facet joint and compatible with a partially calcified articular cyst.
Lumbar radiculopathy due to chondrocalcinosis
Neurology 2006;66;1567
DOI 10.1212/01.wnl.0000208486.53923.07

This information is current as of May 22, 2006

<table>
<thead>
<tr>
<th>Updated Information & Services</th>
<th>including high resolution figures, can be found at: http://n.neurology.org/content/66/10/1567.full</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
<td>This article cites 2 articles, 0 of which you can access for free at: http://n.neurology.org/content/66/10/1567.full#ref-list-1</td>
</tr>
<tr>
<td>Permissions & Licensing</td>
<td>Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: http://www.neurology.org/about/about_the_journal#permissions</td>
</tr>
<tr>
<td>Reprints</td>
<td>Information about ordering reprints can be found online: http://n.neurology.org/subscribers/advertise</td>
</tr>
</tbody>
</table>