Extensive peri-lesional connectivity in congenital hemiparesis

M. Staudt, MD; M. Erb, PhD; C. Braun, PhD; C. Gerloff, MD, PhD; and I. Krägeloh-Mann, MD, PhD, Tübingen, Germany

Two patients with congenital hemiparesis (#5 and #7 in reference1) showed a striking discrepancy between large, pre- and perinatally acquired middle cerebral artery infarctions and relatively preserved sensorimotor functions. Despite the large cystic lesions, the affected hemispheres possessed spino-thalamo-cortical somatosensory afferents as well as cortico-spinal motor efferents. This was shown by magnetoencephalography during repetitive tactile finger stimulation and focal transcranial magnetic stimulation. Accordingly, magnetic resonance (MR) diffusion tensor tractography2 (figure) visualized numerous trajectories passing through the narrow bridge of preserved white matter between the lateral ventricle and the infarcted area, providing extensive structural connectivity of fronto-parietal areas with the brainstem and the cerebellum. Although these findings are suggestive of a superior reorganizational capability of the developing human brain, further studies (including tractography data from patients with similar lesions acquired later in life) will be needed to clarify this point.


Disclosure: The authors report no conflicts of interest.

Address correspondence and reprint requests to Dr. Martin Staudt, Department of Pediatric Neurology, University Children’s Hospital, Hoppe-Seyler-Str. 1, D – 72076 Tübingen, Germany; e-mail: mnstaudt@med.uni-tuebingen.de

Supported by the Deutsche Forschungsgemeinschaft (SFB 550 – C4, C5, C6 and STA 859-1).
Extensive peri-lesional connectivity in congenital hemiparesis

Neurology 2006;66;771
DOI 10.1212/01.wnl.0000201281.85209.8f

This information is current as of March 13, 2006

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/66/5/771.full

References
This article cites 1 articles, 0 of which you can access for free at:
http://n.neurology.org/content/66/5/771.full#ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Imaging
http://n.neurology.org/cgi/collection/all_imaging
Developmental disorders
http://n.neurology.org/cgi/collection/developmental_disorders
Plasticity
http://n.neurology.org/cgi/collection/plasticity

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise

Neurology® is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright ©. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.