Teaching NeuroImage: Cerebral T-waves from an aneurysmal cardunculus compression

Susanne Muehlschlegel, MD
Richard P. Goddeau, Jr., DO
John R. Sims, Jr., MD

Address correspondence and reprint requests to Dr. John R. Sims, Massachusetts General Hospital, Departments of Neurology and Radiology, Division of Neurocritical Care and Stroke, CNY149 Room 6403, 13th Street, Charlestown, MA 02129 jsims@partners.org

Preoperative ECG shows diffuse T-wave inversions (QTc 459 msec) (A). Noncontrast head CT shows a right peri-insular hyperdensity (B, arrow). CTA shows one right middle cerebral artery aneurysm compressing the insula (arrow) and two other aneurysms (arrowheads) (C). Postoperative ECG shows reversal of T-waves in precordial leads (QTc 408 msec) (D).

From the Department of Neurology (S.M., J.R.S.), Division of Neurocritical Care and Stroke, and Department of Radiology (J.R.S.), Massachusetts General Hospital, Harvard Medical School, Boston; and Department of Neurology (R.P.G.), University of Massachusetts Medical School, Worcester.

Disclosure: The authors report no conflicts of interest.
A 41-year-old woman developed temporary substernal chest pain. Physical examination was normal. ECG showed diffuse T-wave inversions with nonfamilial/non-medication-related QTc prolongation (figure, A) persisting despite the resolution of chest pain after sublingual nitroglycerin. Normal serum/urine toxicology, cardiac enzymes, transthoracic echocardiogram, and resting Technetium-99m sestamibi study raised the suspicion for cerebral T-waves. Head CT/CT-angiogram (CTA) revealed a middle cerebral artery aneurysm compressing the cardunculus,1 in the right anterior inferior insula (figure, B and C). Partial ECG normalization (figure, D) by cardunculus decompression (1 month after aneurysm clipping) supports that it is the regulator of sympathetic cardiac outflow balance.1,2

REFERENCES
Teaching NeuroImage: Cerebral T-waves from an aneurysmal cardunculus compression
Susanne Muehlschlegel, Richard P. Goddeau, Jr and John R. Sims, Jr
Neurology 2008;70:e28-e29
DOI 10.1212/01.wnl.0000297555.60074.48

This information is current as of May 21, 2008

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/70/7/e28.full

References
This article cites 2 articles, 1 of which you can access for free at:
http://n.neurology.org/content/70/7/e28.full#ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Cerebrovascular disease/Stroke
http://n.neurology.org/cgi/collection/all_cerebrovascular_disease_stroke
Cardiac
http://n.neurology.org/cgi/collection/cardiac
Cardiac; see Cerebrovascular Disease/Cardiac
http://n.neurology.org/cgi/collection/cardiac_see_cerebrovascular_disease-cardiac
Critical care
http://n.neurology.org/cgi/collection/critical_care
CT
http://n.neurology.org/cgi/collection/ct
Subarachnoid hemorrhage
http://n.neurology.org/cgi/collection/subarachnoid_hemorrhage

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise