Toothbrushing EEG artifact recorded from chronically implanted subdural electrodes

A 45-year-old man had epilepsy beginning at 13 years after herpes simplex virus encephalitis and subsequent right frontotemporal encephalomalacia. Intracranial EEG recording were performed. Rhythmic EEG artifacts, often seen on scalp EEG, can still occur during intracranial recordings from the connections linking the patient to the machine. A software-detected “seizure” revealed activity in the posterior portions of a subdural grid (figure, A, red) that corresponded to toothbrushing (figure, B; video on the Neurology® Web site at www.neurology.org), but did not evolve spatially or temporally (figure, C). The source was current induced by the movement of electrodes plugged into the posterior rows of the 2 32-input jackbox/amplifiers worn suspended in a pouch about the patient’s chest.

Howard P. Goodkin, MD, PhD, Mark Quigg, MD, Charlottesville, VA

Disclosure: Dr. Goodkin serves on scientific advisory boards for the Tuberous Sclerosis Alliance and CURE; serves on the editorial boards of Neurology® and Surgical Neurology International; has served as a consultant to MedImmune; and receives research support from the NIH (NS048413 [PI] and NS067439 [PI]). Dr. Quigg is listed as author on a patent re: Actigraphy system for seizure characterization; receives royalties from the publication of EEG Pearls (Elsevier, 2006); and receives research support from the NIH (NS058634 [Co-PI]).

Address correspondence and reprint requests to Dr. Howard P. Goodkin, Department of Neurology, University of Virginia, PO Box 800394, Charlottesville, VA 22908; Hpg9v@virginia.edu
Toothbrushing EEG artifact recorded from chronically implanted subdural electrodes

Howard P. Goodkin and Mark Quigg

Neurology 2010;75;1850
DOI 10.1212/WNL.0b013e3181fd62fd

This information is current as of November 15, 2010