Teaching NeuroImages:
Isolated pineal hemorrhage

Andrew J. Westwood, MD
Joseph D. Burns, MD
Carlos S. Kase, MD

An 80-year-old woman with a history of hypertension and deep vein thrombosis, who was taking warfarin, presented with sudden-onset coma. Examination was remarkable for wall-eyed bilateral internuclear ophthalmoplegia, small minimally reactive pupils, and spontaneous flexor posturing of the arms. These findings localized to the midbrain and suggested the presence of acute hydrocephalus with compression of the periaqueductal structures of the rostral mesencephalon.1

The findings and initial imaging (figure 1) were consistent with pineal apoplexy.2 After ventriculostomy placement, coagulopathy reversal, and control of blood pressure, the patient made a complete recovery with normal cognition, eye movements, and motor function at discharge (figure 2).

REFERENCES

Figure 1 Noncontrast head CT

Noncontrast head CT shows acute obstructive hydrocephalus and an enlarged, hyperdense pineal with peripheral calcification.

Figure 2 T1-weighted sagittal MRI

(A) Hospital day 4: T1-weighted sagittal MRI shows mixed isointense and hyperintense signal within the pineal, consistent with maturing hemorrhage, compressing the rostral midbrain and the aqueduct. (B) Resolution is seen 5 months later.

From the Departments of Neurology (A.J.W., J.D.B., C.S.K.) and Neurosurgery (J.D.B.), Boston University School of Medicine, Boston, MA.

Disclosure: Dr. Westwood serves on an editorial advisory board for onExamination, an online BMJ learning resource based in the UK. Dr. Burns serves as Review Editor for Frontiers in Hospitalist Neurology and receives research support from CardioNet. Dr. Kase serves on scientific advisory boards for sanofi-aventis and Lundbeck Inc. and receives research support from the NIH (NHLBI, NINDS).
Teaching NeuroImages: Isolated pineal hemorrhage

Neurology 2011;77:e95
DOI 10.1212/WNL.0b013e318233b37f

This information is current as of October 17, 2011

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/77/16/e95.full

References
This article cites 2 articles, 0 of which you can access for free at:
http://n.neurology.org/content/77/16/e95.full#ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Cerebrovascular disease/Stroke
http://n.neurology.org/cgi/collection/all_cerebrovascular_disease_stroke
CT
http://n.neurology.org/cgi/collection/ct
Intracerebral hemorrhage
http://n.neurology.org/cgi/collection/intracerebral_hemorrhage
MRI
http://n.neurology.org/cgi/collection/mri

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise