NEURON-SPECIFIC ENOLASE CORRELATES WITH OTHER PROGNOSTIC MARKERS AFTER CARDIAC ARREST

Jeffrey J. Bazarian, Rochester, NY: Cronberg et al. reported serum NSE levels >33 µg/L to be highly predictive of death after CA treated with hypothermia, and to correlate with abnormal diffusion-weighted imaging (DWI), abnormal somatosensory evoked potentials (SSEP), and postmortem brain histology. The accompanying editorial by Mayer implied that tests like NSE are needed more than ever because hypothermia has fundamentally changed the way post-CA prognosis is determined. However, while the game may have changed, the rules are still the same.

While hypothermia increases the proportion of patients with CA who regain consciousness, those who do not after 72 hours still have a uniformly poor prognosis. Rather than trying to predict who will die, the more clinically relevant task is to identify the few who are destined to survive. In that case, NSE sensitivity, not its specificity, is the important characteristic to consider. Unfortunately, NSE sensitivity, and its ability to rule out the possibility of death, is considerably less robust. This may be due to variation in the permeability of the blood–brain barrier (BBB) which, when intact, prevents extensive brain injury from being reflected in the serum. NSE sensitivity can be enhanced by combining it with an independent marker of BBB permeability, such as the CSF/serum albumin ratio or serum S100B. Low NSE in the setting of an open BBB would imply no brain injury and a potentially reversible cause of coma. Low NSE and a closed BBB means the NSE level is not reflective of the degree of brain injury. This strategy provides a more practical adjunct to outcome determination in patients still comatose 72 hours after hypothermia for CA.

William D. Freeman, Nicole A. Chiota, Rochester, MN: Cronberg et al. report that NSE is strongly correlated to other measures of global ischemic brain damage after CA treated with TH. At our center, we reviewed TH-treated patients with CA between November 2006 and April 2010, and identified 35 patients with NSE measured 24–72 hours after CA. Twenty-two had NSE less than 30 µg/L, 13 of which had good neurologic outcome (13/22, 59%), as defined by cerebral performance category of 1–2 at discharge. Of the 13 patients with NSE greater than 33 µg/L, 2 achieved a good neurologic outcome and followed commands within 72 hours after CA (NSE values of 37 and 41 µg/L). Our data suggest that NSE greater than 33 µg/L, the cutoff value reported in the 2006 American Academy of Neurology guidelines, carries a false positive rate of 13% in predicting poor prognosis in TH-treated patients with CA. We agree with Cronberg et al. that NSE assists in predicting brain injury in TH-treated patients with CA. We agree that NSE laboratory standardization may contribute to the diverse results in the literature, and until such standardization and validation occur, a multimodal approach to prognostication is needed.

Author Response: T. Cronberg, M. Rundgren, E. Westhall, E. Englund, R. Siemund, I. Rosén, H. Widner, H. Friberg, Lund, Sweden: We thank Drs. Freeman, Chiota, and Bazarian for their comments. We agree with the editorialist, Dr. Mayer, that prognostication following cardiac arrest is more complex with hypothermia. However, the NSE 33 µg/L cutoff for poor prognosis could also be questioned without hypothermia.

Megan Alcauskas, MD, and Robert C. Griggs, MD

Editors’ Note: Responses to this study caution against relying too heavily on neuron-specific enolase (NSE) levels alone to predict death in patients with cardiac arrest (CA) treated with therapeutic hypothermia (TH). Dr. Bazarian writes that the sensitivity of NSE levels in predicting survival may be enhanced by adding a marker of blood–brain barrier permeability. Drs. Freeman and Chiota cite their own data, which showed a cutoff NSE level of 33 µg/L had a false-positive rate of 13% in predicting poor prognosis. The authors of the study reply that they agree that serial NSE levels are best used as an adjunct to traditional prognostic indicators in guiding clinical decision-making.
Rather than discuss cutoff points, we should focus on the potential use of NSE as an adjunct to other methods. That a biomarker, indeed any biomarker, would constitute the foundation of a withdrawal-of-care decision is unrealistic since methodologic problems will always generate outliers. For the same reason, we should not expect to find any biomarker with a 100% specificity for poor prognosis, since cutoff levels will only be gradually raised with increasing data accumulation until the clinical usefulness of the test is lost.

Our experience is that serial measurements of NSE, analyzed on a 24/7 basis, in combination with clinical examinations and amplitude-integrated EEG (aEEG) is a good basis for a continuous neurologic prognostication of cardiac arrest patients.1,9 While the patient is still sedated, we find the aEEG and NSE to be valuable tools that help us plan intensive care and communicate with relatives. NSE has become a useful standard laboratory test to evaluate prognosis after cardiac arrest but should be used with realistic expectations.

Copyright © 2011 by AAN Enterprises, Inc.

Neuron-specific enolase correlates with other prognostic markers after cardiac arrest
Jeffrey J. Bazarian, William D. Freeman, T. Cronberg, et al.

Neurology 2011;77;1856-1857
DOI 10.1212/WNL.0b013e31823c1141

This information is current as of November 14, 2011

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/77/20/1856.full

References
This article cites 9 articles, 3 of which you can access for free at:
http://n.neurology.org/content/77/20/1856.full#ref-list-1

Permissions & Licensing
Information about reproducing this article in parts (figures,tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise