ENVIRONMENTAL RISK FACTORS AND CLINICAL PHENOTYPE IN FAMILIAL AND SPORADIC PRIMARY BLEPHAROSPASM

Roger Kurlan, Summit, NJ: I read with interest in the article by Defazio et al. Their study revealed an evident relationship between eye symptoms and diseases (dry eyes, blepharitis, keratoconjunctivitis) and the occurrence of the dystonic condition primary blepharospasm. He provides supportive examples from his own research into patients with Meige syndrome. Dr. Kashyape, in response to the study by Dr. Sharma et al. into temporal lobe pathology in epilepsy of infancy with migrating focal seizures, presents data from one of his patients with this epilepsy syndrome who had a nonfocal brain MRI but hippocampal sclerosis on autopsy. The authors respond that they continue to contend that this disease is not a structural epilepsy but that more research should be pursued.

Megan Alcauskas, MD, and Robert C. Griggs, MD

CHILD NEUROLOGY: EPILEPSY OF INFANCY WITH MIGRATING FOCAL SEIZURES

Pawan S. Kashyape, Katharine Forrest, Southampton, UK: In their review, Sharma et al. stated that neuroimaging was normal in all reported patients. We wish to draw attention to 4 reported cases and our experience of a single case of hippocampal sclerosis in epileptic encephalopathy. Caraballo et al. reported 3 cases with radiologic evidence of hippocampal sclerosis on MRI scans but the exact timing of the occurrence is not clear. We continue to contend that this disease is not a structural epilepsy but that more research should be pursued.

of these scans in relation to seizure onset was unclear. Coppola et al.\(^3\) found left temporal dual pathology on MRI in one case, including hippocampal sclerosis and cortical-subcortical blurring with left temporal lobe atrophy. Three case reports of autopsy have also been published: one was normal and the other two showed gliosis of the CA1 sector of the pyramidal layer of the hippocampus.\(^5\) Our case had no focal signs on MRI brain scan but revealed bilateral hippocampal segmental neuronal loss and gliosis affecting CA1 and CA4 sectors with patchy cortical damage consisting of astrocyte gliosis and relatively good neuronal preservation. The relationship between hippocampal sclerosis and this epilepsy syndrome needs to be further elucidated by high-resolution neuroimaging and neuropathologic evidence from autopsy in fatal cases.

Author Response: Suvasini Sharma, Naveen Sankhyan, Konanki Ramesh, Sheffali Gulati, New Delhi: Drs. Kashayape and Forrest correctly point out that neuroimaging findings have been reported in a few patients with epilepsy of infancy with migrating focal seizures.\(^2,3\) However, we contend that “epilepsy of infancy with migrating focal seizures” is not a structural epilepsy.\(^5\) Coppola et al.\(^3\) emphasize that hippocampal sclerosis in their patient was unlikely to contribute to the pattern of migrating partial seizures and fulfilled the diagnostic criteria for migrating partial seizures in infancy independent of the temporal lobe lesion. In the report by Caraballo et al.,\(^2\) the exact timing of the MRI scans in relation to seizure onset is unclear, so the cause for the hippocampal sclerosis is unknown. We thank Drs. Kashyape and Forrest for sharing these cases and their experience with autopsy evidence of hippocampal segmental neuronal loss and gliosis in children with this syndrome. We agree that the relationship between hippocampal sclerosis and this epilepsy syndrome warrants further study.

Author disclosures are available upon request (journal@neurology.org).
Child Neurology: Epilepsy of Infancy with Migrating Focal Seizures
Pawan S. Kashyape, Suvasini Sharma, Katharine Forrest, et al.

Neurology 2011;77;2138-2139
DOI 10.1212/01.wnl.0000410086.96110.b6

This information is current as of December 12, 2011

<table>
<thead>
<tr>
<th>Updated Information & Services</th>
<th>including high resolution figures, can be found at: http://n.neurology.org/content/77/24/2138.2.full</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
<td>This article cites 5 articles, 1 of which you can access for free at: http://n.neurology.org/content/77/24/2138.2.full#ref-list-1</td>
</tr>
<tr>
<td>Permissions & Licensing</td>
<td>Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: http://www.neurology.org/about/about_the_journal#permissions</td>
</tr>
<tr>
<td>Reprints</td>
<td>Information about ordering reprints can be found online: http://n.neurology.org/subscribers/advertise</td>
</tr>
</tbody>
</table>

Neurology © is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright Copyright © 2011 by AAN Enterprises, Inc. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.