Pearls & Oy-sters: Treatment of central sleep apnea with topiramate

PEARLS

- Cheyne-Stokes breathing (CSB) is a type of central sleep disorder commonly associated with heart failure, cerebrovascular disease, or renal failure.
- At least 3 consecutive cycles of cyclical crescendo/decrescendo change in breathing amplitude is required with 5 or more central apneas or hypopneas per hour of sleep or a cyclical crescendo and decrescendo change in breathing amplitude that has a duration of 10 minutes or more.1
- Treatment options include noninvasive mechanical ventilation and medication therapy.
- Medications with carbonic anhydrase inhibiting action, such as topiramate, may be effective for central sleep apnea, and provide benefit in patients with associated comorbidities, such as epilepsy or migraine.

OY-STER

- Not considering alternative medical treatment of central sleep apnea may limit therapeutic options for these patients and result in avoidable trials of noninvasive mechanical ventilation leading to high costs and possible poor compliance.

CASE REPORT A 67-year-old man with a history of epilepsy, cardiac failure, alcohol dependence, and hypercholesterolemia underwent a polysomnogram (PSG) study because of snoring and observed apnea during sleep. Body mass index was recorded at 25.9 kg/m². Medications included metoprolol, valsartan, simvastatin, phenytoin, valproate, and levetiracetam. Prior echocardiogram had shown an ejection fraction of 35%. PSG showed an overall Central Apnea Index (CAI) of 18, with 18 central apneas/hour, 7 hypopneas/hour, 0 mixed apneas/hour, and 0 obstructive apneas/hour (figure 1). Central apneas displayed a crescendo-decrescendo pattern, consistent with CSB. Because of recurrent seizures, topiramate was added to the medication regimen, with a titration schedule to 100 mg twice per day. After 5 months, a second PSG for titration with adaptive servo-ventilation was obtained. Baseline portion of the study (about 90 minutes) showed a significant decrease in number of central apneas, with an overall CAI of 0, with 0 central apneas/hour, 12 hypopneas/hour, 0 mixed apneas/hour, 0 obstructive apneas per hour of sleep, and resolution of the Cheyne-Stokes pattern of breathing (figure 2).

DISCUSSION Breathing is an unconscious process initiated in the brainstem and regulated by monitoring levels of carbon dioxide (and, to a lesser extent, oxygen) in the blood. Chemoreceptors detect the partial pressure of carbon dioxide and adjust minute ventilation accordingly. Elevated carbon dioxide levels result in a rapid feedback response to increase ventilatory rate and subsequently reduce the carbon dioxide level in the blood. In the awake state, the PCO₂ is kept around 40 mm Hg. In sleep the level is dependent on sleep stage but it is typically around 45 mm Hg.

Sleep apnea is a common, undertreated disorder which increases the risk of cardiovascular disease, hypertension, and stroke.2 Sleep apnea is classified into central or obstructive depending on the absence or presence of inspiratory effort, respectively. CSB is a type of central breathing disorder in sleep associated with cardiac (particularly heart failure), renal, or neurologic disease. It occurs in non-REM sleep and is also more common at high altitude and in patients with Arnold Chiari type 1 malformation.

CSB is typified by cyclical waves of breathing that becomes progressively faster (crescendo) then progressively slower (decrescendo) to the point respiration is abnormally low (a hypopnea) or arrested (an apnea). By definition, at least 3 consecutive cycles of cyclical crescendo/decrescendo change in breathing amplitude is required with 5 or more central apneas or hypopneas per hour of sleep or a cyclical crescendo and decrescendo change in breathing amplitude that has a duration of 10 minutes or more.1

Correspondence & reprint requests to Dr. Vendrame: vendrame@bu.edu

From the Department of Neurology, Boston University School of Medicine, Boston, MA.

Disclosure: Author disclosures are provided at the end of the article.

Copyright © 2012 by AAN Enterprises, Inc.
The pathophysiology of CSB is not fully understood; however, the proposed "loop-gain concept" suggests the fault lies with an overly sensitive monitor-and-response mechanism. The loop gain, a term borrowed from engineering, describes the stability of a system calculated as the ratio of a response size to a disturbance size. In ventilation, the response to CO₂ is the "controller gain" and the "plant gain" is the blood gas response to change in ventilation. The length of the cycle will depend upon the time between detection and time lag to produce a corrective response, the "feedback gain" (reliant upon the hemodynamics of the body). The loop gain of this system is therefore the ratio of controller, plant, and feedback gain.

When the controller is overly sensitive the threshold to evoke a change is more easily attained. This then results in a feedback loop correcting the abnormal carbon dioxide levels detected. If there is oversensitivity at the plant gain then this may result in overcompensation of the ventilatory response and lead to respiratory instability—an inappropriately sized response to an inappropriately detected disturbance. The overall unstable system therefore would manifest itself as a cyclical fluctuation in breathing, as seen in CSB.

Treatments for CSB have therefore centered on stabilizing this feedback system and dampening the loop gain. In heart failure the effective circulation is impaired (the feedback gain). Patients with heart failure usually have PCO₂ levels in the lower range of normal and are hypoxicemic (the plant gain), which may itself result in apnea through pulmonary vasoconstriction and hypoventilation. Depression of the respiratory rate may also be due to chronically elevated adenosine levels (the controller gain). These alterations may explain why CSB is frequently seen in heart failure.

Treatments for CSB therefore centered on stabilizing this feedback system and dampening the loop gain. In heart failure the effective circulation is impaired (the feedback gain). Patients with heart failure usually have PCO₂ levels in the lower range of normal and are hypoxicemic (the plant gain), which may itself result in apnea through pulmonary vasoconstriction and hypoventilation. Depression of the respiratory rate may also be due to chronically elevated adenosine levels (the controller gain). These alterations may explain why CSB is frequently seen in heart failure.

Figure 1 Representative 7-epoch polysomnogram before topiramate initiation in supine position during non-REM

Periodic central apneas (orange dotted box) with crescendo-decrescendo pattern (orange dotted circle) are seen. Majority of arousals (*) coincide with peak of the crescendo. ABDM = abdominal belt; C = central; CHIN = chin EMG; EOG = electrooculogram; F = frontal; FLOW = nasal airflow; LLEG = left leg; M = mastoid; O = occipital; PRES = nasal pressure; SNOR = snore channel; RLEG = right leg; sPO₂ = oxygen saturation; THOR = chest belt.

The pathophysiology of CSB is not fully understood; however, the proposed "loop-gain concept" suggests the fault lies with an overly sensitive monitor-and-response mechanism.

The loop gain, a term borrowed from engineering, describes the stability of a system calculated as the ratio of a response size to a disturbance size. In ventilation, the response to CO₂ is the “controller gain” and the “plant gain” is the blood gas response to change in ventilation. The length of the cycle will depend upon the time between detection and time lag to produce a corrective response, the “feedback gain” (reliant upon the hemodynamics of the body). The loop gain of this system is therefore the ratio of controller, plant, and feedback gain.

When the controller is overly sensitive the threshold to evoke a change is more easily attained. This then results in a feedback loop correcting the abnormal carbon dioxide levels detected. If there is oversensitivity at the plant gain then this may result in overcompensation of the ventilatory response and lead to respiratory instability—an inappropriately sized response to an inappropriately detected disturbance. The overall unstable system therefore would manifest itself as a cyclical fluctuation in breathing, as seen in CSB.

Treatments for CSB have therefore centered on stabilizing this feedback system and dampening the loop gain. In heart failure the effective circulation is impaired (the feedback gain). Patients with heart failure usually have PCO₂ levels in the lower range of normal and are hypoxicemic (the plant gain), which may itself result in apnea through pulmonary vasoconstriction and hypoventilation. Depression of the respiratory rate may also be due to chronically elevated adenosine levels (the controller gain). These alterations may explain why CSB is frequently seen in heart failure.

Treatments for CSB have therefore centered on stabilizing this feedback system and dampening the loop gain. In heart failure the effective circulation is impaired (the feedback gain). Patients with heart failure usually have PCO₂ levels in the lower range of normal and are hypoxicemic (the plant gain), which may itself result in apnea through pulmonary vasoconstriction and hypoventilation. Depression of the respiratory rate may also be due to chronically elevated adenosine levels (the controller gain). These alterations may explain why CSB is frequently seen in heart failure.

Treatments for CSB have therefore centered on stabilizing this feedback system and dampening the loop gain. In heart failure the effective circulation is impaired (the feedback gain). Patients with heart failure usually have PCO₂ levels in the lower range of normal and are hypoxicemic (the plant gain), which may itself result in apnea through pulmonary vasoconstriction and hypoventilation. Depression of the respiratory rate may also be due to chronically elevated adenosine levels (the controller gain). These alterations may explain why CSB is frequently seen in heart failure.

Treatments for CSB have therefore centered on stabilizing this feedback system and dampening the loop gain. In heart failure the effective circulation is impaired (the feedback gain). Patients with heart failure usually have PCO₂ levels in the lower range of normal and are hypoxicemic (the plant gain), which may itself result in apnea through pulmonary vasoconstriction and hypoventilation. Depression of the respiratory rate may also be due to chronically elevated adenosine levels (the controller gain). These alterations may explain why CSB is frequently seen in heart failure.

Treatments for CSB have therefore centered on stabilizing this feedback system and dampening the loop gain. In heart failure the effective circulation is impaired (the feedback gain). Patients with heart failure usually have PCO₂ levels in the lower range of normal and are hypoxicemic (the plant gain), which may itself result in apnea through pulmonary vasoconstriction and hypoventilation. Depression of the respiratory rate may also be due to chronically elevated adenosine levels (the controller gain). These alterations may explain why CSB is frequently seen in heart failure.

Treatments for CSB have therefore centered on stabilizing this feedback system and dampening the loop gain. In heart failure the effective circulation is impaired (the feedback gain). Patients with heart failure usually have PCO₂ levels in the lower range of normal and are hypoxicemic (the plant gain), which may itself result in apnea through pulmonary vasoconstriction and hypoventilation. Depression of the respiratory rate may also be due to chronically elevated adenosine levels (the controller gain). These alterations may explain why CSB is frequently seen in heart failure.

Treatments for CSB have therefore centered on stabilizing this feedback system and dampening the loop gain. In heart failure the effective circulation is impaired (the feedback gain). Patients with heart failure usually have PCO₂ levels in the lower range of normal and are hypoxicemic (the plant gain), which may itself result in apnea through pulmonary vasoconstriction and hypoventilation. Depression of the respiratory rate may also be due to chronically elevated adenosine levels (the controller gain). These alterations may explain why CSB is frequently seen in heart failure.

Treatments for CSB have therefore centered on stabilizing this feedback system and dampening the loop gain. In heart failure the effective circulation is impaired (the feedback gain). Patients with heart failure usually have PCO₂ levels in the lower range of normal and are hypoxicemic (the plant gain), which may itself result in apnea through pulmonary vasoconstriction and hypoventilation. Depression of the respiratory rate may also be due to chronically elevated adenosine levels (the controller gain). These alterations may explain why CSB is frequently seen in heart failure.

Treatments for CSB have therefore centered on stabilizing this feedback system and dampening the loop gain. In heart failure the effective circulation is impaired (the feedback gain). Patients with heart failure usually have PCO₂ levels in the lower range of normal and are hypoxicemic (the plant gain), which may itself result in apnea through pulmonary vasoconstriction and hypoventilation. Depression of the respiratory rate may also be due to chronically elevated adenosine levels (the controller gain). These alterations may explain why CSB is frequently seen in heart failure.

Treatments for CSB have therefore centered on stabilizing this feedback system and dampening the loop gain. In heart failure the effective circulation is impaired (the feedback gain). Patients with heart failure usually have PCO₂ levels in the lower range of normal and are hypoxicemic (the plant gain), which may itself result in apnea through pulmonary vasoconstriction and hypoventilation. Depression of the respiratory rate may also be due to chronically elevated adenosine levels (the controller gain). These alterations may explain why CSB is frequently seen in heart failure.

Treatments for CSB have therefore centered on stabilizing this feedback system and dampening the loop gain. In heart failure the effective circulation is impaired (the feedback gain). Patients with heart failure usually have PCO₂ levels in the lower range of normal and are hypoxicemic (the plant gain), which may itself result in apnea through pulmonary vasoconstriction and hypoventilation. Depression of the respiratory rate may also be due to chronically elevated adenosine levels (the controller gain). These alterations may explain why CSB is frequently seen in heart failure.

Treatments for CSB have therefore centered on stabilizing this feedback system and dampening the loop gain. In heart failure the effective circulation is impaired (the feedback gain). Patients with heart failure usually have PCO₂ levels in the lower range of normal and are hypoxicemic (the plant gain), which may itself result in apnea through pulmonary vasoconstriction and hypoventilation. Depression of the respiratory rate may also be due to chronically elevated adenosine levels (the controller gain). These alterations may explain why CSB is frequently seen in heart failure.

Treatments for CSB have therefore centered on stabilizing this feedback system and dampening the loop gain. In heart failure the effective circulation is impaired (the feedback gain). Patients with heart failure usually have PCO₂ levels in the lower range of normal and are hypoxicemic (the plant gain), which may itself result in apnea through pulmonary vasoconstriction and hypoventilation. Depression of the respiratory rate may also be due to chronically elevated adenosine levels (the controller gain). These alterations may explain why CSB is frequently seen in heart failure.

Treatments for CSB have therefore centered on stabilizing this feedback system and dampening the loop gain. In heart failure the effective circulation is impaired (the feedback gain). Patients with heart failure usually have PCO₂ levels in the lower range of normal and are hypoxicemic (the plant gain), which may itself result in apnea through pulmonary vasoconstriction and hypoventilation. Depression of the respiratory rate may also be due to chronically elevated adenosine levels (the controller gain). These alterations may explain why CSB is frequently seen in heart failure.
No other medications than those listed were administered to the patient between the 2 PSGs, suggesting that topiramate reduced the prevalence of CSB. There are limitations of this case report that must be noted. One limitation that was not addressed in our study was the inability to define the hypopneas as central or obstructive. These require an esophageal probe, intercostal EMG, or calibrated respiratory inductance plethysmography, but these were not used in our study. No follow-up echocardiogram was performed to rule out spontaneous improvement in circulation independent of the topiramate. However, the patient routinely follows up with cardiology and he was stable from the cardiology standpoint. Further studies including discontinuation of topiramate and reevaluation to assess for recurrence of CSB may strengthen these findings.

Nevertheless, in patients with headaches, mood disorders, or epilepsy who are found to have central sleep apneas, treatment with topiramate is a consideration. Using medication that can be multi-effective against several comorbidities provides the most cost-effective outcome and aims to improve patient compliance by limiting the necessary lifestyle adjustments and adherence to a larger than needed polypharmacy.

REFERENCES

Pearls & Oysters: Treatment of central sleep apnea with topiramate
Andrew J. Westwood, Martina Vendrame, Georgia Montouris, et al.
Neurology 2012;78:e97-e99
DOI 10.1212/WNL.0b013e318250d7bf

This information is current as of April 16, 2012

<table>
<thead>
<tr>
<th>Updated Information & Services</th>
<th>including high resolution figures, can be found at:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>http://n.neurology.org/content/78/16/e97.full</td>
</tr>
<tr>
<td>References</td>
<td>This article cites 9 articles, 0 of which you can access for free at:</td>
</tr>
<tr>
<td></td>
<td>http://n.neurology.org/content/78/16/e97.full#ref-list-1</td>
</tr>
<tr>
<td>Subspecialty Collections</td>
<td>This article, along with others on similar topics, appears in the following collection(s):</td>
</tr>
<tr>
<td></td>
<td>All Sleep Disorders</td>
</tr>
<tr>
<td></td>
<td>http://n.neurology.org/cgi/collection/all_sleep_disorders</td>
</tr>
<tr>
<td></td>
<td>Antiepileptic drugs</td>
</tr>
<tr>
<td></td>
<td>http://n.neurology.org/cgi/collection/antiepileptic_drugs</td>
</tr>
<tr>
<td></td>
<td>Sleep apnea</td>
</tr>
<tr>
<td></td>
<td>http://n.neurology.org/cgi/collection/sleep_apnea</td>
</tr>
<tr>
<td>Permissions & Licensing</td>
<td>Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:</td>
</tr>
<tr>
<td></td>
<td>http://www.neurology.org/about/about_the_journal#permissions</td>
</tr>
<tr>
<td>Reprints</td>
<td>Information about ordering reprints can be found online:</td>
</tr>
<tr>
<td></td>
<td>http://n.neurology.org/subscribers/advertise</td>
</tr>
</tbody>
</table>