In this issue, Dr. Montgomery discusses the basal ganglia as oscillator in response to “Subthalamic deep brain stimulation at individualized frequencies for Parkinson disease” by Tsang et al. In reference to “Risk of fractures in patients with multiple sclerosis: A population-based cohort study” by Bazelier et al., Drs. Dobson et al. stress the need to limit anxiolytics/hypnotics and antidepressants where possible in patients with multiple sclerosis given the increased risk for falls and fractures. They also emphasize that the evidence tying short-course IV glucocorticoids to fracture risk is less clear. The authors are developing a clinical risk score for fracture risk assessment in patients with multiple sclerosis.

Megan Alcauskas, MD, and Robert C. Griggs, MD

RISK OF FRACTURES IN PATIENTS WITH MULTIPLE SCLEROSIS: A POPULATION-BASED COHORT STUDY

Ruth Dobson, Sreeram Ramagopalan, Gavin Giovannoni, London: Bazelier et al.1 address the important issue of fracture risk in multiple sclerosis (MS) yet the discussion does not go far enough. Use of anxiolytics/hypnotics and antidepressants was strongly associated with fracture risk. These treatments have also been associated with an increased risk of both falls2 and fractures3 in large population-based studies. Given the increased risk of falling associated with MS,1 the recommendation to avoid anxiolytics/hypnotics wherever possible and to increase awareness of the falls risk associated with antidepressants in MS is important.

The authors discuss short-course IV glucocorticoids, used during relapses, as a contributor to fracture risk. Although one study associated glucocorticoid use with fracture risk,4 this has not been replicated.5,6 The potential for rapid improvement in mobility following glucocorticoid treatment during relapse may have beneficial effects.

A more proactive approach is required in MS. We propose all patients with MS should have formal...
Subthalamic deep brain stimulation at individualized frequencies for parkinson disease
Erwin B Montgomery, Jr.
Neurology 2012;79;1934
DOI 10.1212/WNL.0b013e31827543f6

This information is current as of October 29, 2012