Holohemispheric developmental venous anomaly

Developmental venous anomalies (DVA) are normally diminutive and incidental.1,2 In this 33-year-old patient with epilepsy, the DVA is holohemispheric. Her epilepsy probably originates from the left side based on semiology; the EEG displayed left-sided slowing. Axial T1-weighted sequences show skull atrophy, ventricular widening, and satellite cavernous malformations with accumulation of subacute blood products including hemosiderin (figure, A and B). T2 gradient echo illustrates pockets of chronic hemorrhage (figure, C and D). Engorged holohemispheric anomalous venous structures channel into ventricular periependymal veins, illustrated by multiplanar T1 echo spin postcontrast sequences (figure, E and F). Time to minimum perfusion reflects elevated transit times, suggesting venous hypertension and capillary backpressures.

Andrew K. Jung, John W. Henson, MD, Daniel Susanto, MD, Lisa M. Caylor, MD, Michael J. Doherty, MD

From the Zanvyl Krieger School of Arts and Sciences (A.K.J.), Johns Hopkins University, Baltimore, MD; and Swedish Neuroscience Institute (J.W.H., D.S., L.M.C., M.J.D.), Seattle, WA.
Author contributions: A.K. Jung: drafting of manuscript, data collection. Dr. Henson: data collection, imaging review. Dr. Susanto: drafting of manuscript, imaging review. Dr. Caylor: drafting of manuscript, data collection. Dr. Doherty: manuscript coordination and drafting.

Study funding: No targeted funding reported.

Disclosure: The authors report no disclosures relevant to the manuscript. Go to Neurology.org for full disclosures.

Correspondence to Dr. Doherty: Michael.doherty@swedish.org


Holohemispheric developmental venous anomaly
Andrew K. Jung, John W. Henson, Daniel Susanto, et al.

Neurology 2013;80;1718-1719
DOI 10.1212/WNL.0b013e3182904fbb

This information is current as of April 29, 2013