Editors’ Note: Dr. Rosenberg questions whether the resolution of the mild cognitive impairment in the study by Drs. Koepsell and Monsell was not in fact caused by a statistical phenomenon—regression to the mean—which can make natural variation in repeated data look like real change. Regal discusses whether encephalopathy or delirium is the best description for patients with neurologic manifestations of *Escherichia coli* infection—induced hemolytic-uremic syndrome. Dr. Brouwer responds to Dr. Boelman, who suggests that meningitis-related stroke may confound the outcome difference in pneumococcal and meningococcal meningitis.

REVERSION FROM MILD COGNITIVE IMPAIRMENT TO NORMAL OR NEAR-NORMAL COGNITION: RISK FACTORS AND PROGNOSIS

Gilad Rosenberg, Jerusalem: Drs. Koepsell and Monsell analyzed a population of subjects with mild cognitive impairment (MCI) who allegedly reverted back to normal cognition, only to remain at a high risk of subsequently progressing to Alzheimer disease.1 Out of 3,020 subjects diagnosed with MCI at their initial study visit, the authors’ analysis focused on a subgroup of 483 subjects who—1 year later—had no MCI.

Regression to the mean is a statistical phenomenon that can make natural variation in repeated data look like real change.2 Is it possible that the observed reversion from MCI was in fact regression to the mean?

© 2013 American Academy of Neurology

NEUROLOGIC MANIFESTATIONS OF *E coli* INFECTION-INDUCED HEMOLYTIC-UREMIC SYNDROME IN ADULTS

Paul J. Regal, Lake Haven, Australia: I commend Weissenborn et al.1 for careful serial neurologic and neuropsychological examination of 42 severely ill adults. I question whether encephalopathy or delirium is the best description. The first of 2 cardinal features of delirium on the Confusion Assessment Method (CAM)2 is acute confusion with fluctuating course. All the observations support sudden onset. The low median age of 43 years makes prior brain disease such as Alzheimer disease and stroke unlikely in most subjects. Figure 2 demonstrates great fluctuation in neuropsychological dysfunction.1 The second CAM cardinal feature is inattention. Twenty-one patients had impaired working memory. We can safely infer that almost all 21 had inattention; 10 patients with stupor or coma had inattention. Thus the first 2 cardinal features of delirium were fulfilled in an estimated 30 patients. CAM positivity requires disorganized thinking or altered level of consciousness. Ten had altered level of consciousness and many of the 24 patients whose Mini-Mental State Examination fell below 28 or the 5 who developed agitation would likely have disorganized thinking. I estimate 50% of these patients had CAM-positive delirium. In 584 key articles on delirium, this is the first report of delirium in adults with hemolytic uremic syndrome.

© 2013 American Academy of Neurology

ADJUNCTIVE DEXAMETHASONE IN ADULTS WITH MENINGOCOCCAL MENINGITIS

Cyrus G. Boelman, Toronto: In the article by Heckenberg et al.,7 the authors conclude that dexamethasone did not similarly improve the unfavorable outcome in meningococcal meningitis as was seen in their previous pneumococcal cohort study.2 The difference in the incidence of meningitis-related stroke between these meningitis populations may explain the difference in the cohorts’ Glasgow Outcome Scale results.

Stroke occurs more commonly in pneumococcal meningitis. Brouwer et al.2 reported infarction in 7% of the 90% of patients who received a cranial CT on
Reversion from mild cognitive impairment to normal or near-normal cognition: Risk factors and prognosis
Gilad Rosenberg
Neurology 2013;80;1818
DOI 10.1212/WNL.0b013e31829430ba

This information is current as of May 6, 2013

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/80/19/1818.1.full

References
This article cites 2 articles, 1 of which you can access for free at:
http://n.neurology.org/content/80/19/1818.1.full#ref-list-1

Citations
This article has been cited by 1 HighWire-hosted articles:
http://n.neurology.org/content/80/19/1818.1.full##otherarticles

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise