Editors’ Note: In WriteClick this week, Mr. Zahednasab argues that the status of the disease of a patient with multiple sclerosis (MS) is relevant when discussing viruses and MS. He supports his claim, as is customary in scholarly writing, with a reference. The authors respond simply that the referenced study “has been challenged,” a statement that this editor plans on appropriating for frequent use in the future. The authors similarly defend their opposition with a reference. Two dueling studies with equal methods, published in the same journal, produce contradictory results on their way to polar opposite conclusions.

Megan Alcauskas, MD, and Robert C. Griggs, MD

NEUROLOGIC DISABILITY: A HIDDEN EPIDEMIC FOR INDIA
Nitin K. Sethi, New York: Das et al.1 examined the epidemic of neurologic disability in India. As the authors noted, it is not just hidden but ignored. In large metropolitan areas such as New Delhi and Mumbai, excellent health care facilities currently exist for the treatment of acute stroke, traumatic brain injuries (TBI), and neurodegenerative conditions such as dementia. Patients from neighboring cities and villages flock to these centers to receive care. The time period after patients leave the hospital is the problem that is ignored by the government and medical community. In the absence of comprehensive TBI and stroke rehabilitation centers, patients are discharged and the burden of care falls on family and close friends. With few patients receiving comprehensive speech, physical, and occupational therapy, neurologic outcomes are poor, which adds to disease burden. In countries like India where resources are limited and demands high, neurologic disability from TBI and stroke can only be reduced if the emphasis is on prevention by modification of respective risk factors. This should be reflected in the national health policies of these countries, with adequate allocation of resources toward primary prevention of TBI and stroke as well as establishment of nursing homes and other subacute facilities to take care of these patients after discharge.

© 2013 American Academy of Neurology

Mamta Bhushan Singh, New Delhi: I read the article by Das et al.1 with interest. Das et al.1 correctly identify TBI, dementia, and stroke as contributors to the epidemic of neurologic disability. Epilepsy should also be included. Epidemiologic studies have suggested that there are 10–12 million Indians with epilepsy and approximately 73%–78% are not receiving appropriate treatment.2 Within India, the treatment gap varies widely between the rural and urban regions and a treatment gap of up to 90% has been reported for rural populations.3 Disability in epilepsy remains largely hidden. The connection with disability in the context of epilepsy is rarely discussed. When it is mentioned, intellectual disability is often the focus. Untreated or inadequately treated epilepsy commonly leads to other forms of disability: loss of an eye, limb, teeth, or digit, or burn-related injury. It is vital to include epilepsy when calculating neurologic disability because it is preventable in those who are treatment naive as they respond well to antiepileptic drugs. Mandatory inclusion of “Axis 5” from the 2001 ILAE report4 in the diagnosis of all patients with epilepsy may be a beginning.

© 2013 American Academy of Neurology


IMPAIRMENT OF JCV-SPECIFIC T-CELL RESPONSE BY CORTICOTHERAPY: EFFECT ON PML-IRIS MANAGEMENT?
Hamid Zahednasab, Tehr, Iran: Antoniol et al.1 described the impairment of JC virus (JCV)–specific T-cell response by corticosteroid therapy. The authors did not indicate if patients with relapsing-remitting multiple sclerosis (RRMS) were in relapse or remission stage of the disease. Sotelo et al.2 showed that the viral
load of varicella-zoster virus (VZV) is higher in patients with MS at relapse phase than those in remission. The status of the disease course in all patients with MS should be determined before sampling.

Four out of the 15 patients with MS with relapse were on interferon (IFN)-β treatment. It has been shown that the administration of IFN-β can lead to the reduction of JCV genome and may result in a false-negative due to decreasing the JCV titer and T-cell response. Thus, patients taking IFN-β should be excluded from this study.

In addition, we would not have included clinically isolated syndrome (CIS) in this study cohort. Approximately 80% of patients with CIS develop MS, while the rest do not. Patients with CIS should not be considered for evaluation of JCV-specific T-cell response under corticosteroid therapy.

Author Response: Renaud A. Du Pasquier, Mathieu Canales, Myriam Schluep, Lausanne, Switzerland: We thank Mr. Zahednasab for his interest in our article. As we explained in the Methods, we enrolled only patients with MS who had a relapse severe enough to warrant 3 days of IV corticosteroids followed by tapering oral prednisone. The mean delay between the onset of symptoms and steroid treatment was 11.6 days (range 0–54 days).

Concerning VZV and MS, the paper of Sotelo et al. has been challenged. In addition, VZV is not JCV so it is difficult to draw any conclusions from this comparison.

Regarding IFN-β, as we mentioned: “If a patient exhibited no T-cell response against a given virus before and after CS, then this patient was not taken into account in our analyses for the given virus and the given assay.” This was the case in 2 of 4 patients on IFN-β, who are not part of the JCV-specific cellular immune response part of our article and thus not included into the analysis of corticosteroids effects. Finally, in the patients with CIS, diseases other than MS were carefully ruled out. Currently, 4 of 8 of these patients with CIS have converted to definite MS, confirming that their inclusion was appropriate.

© 2013 American Academy of Neurology

Impairment of JCV-specific T-cell response by corticotherapy: Effect on PML-IRIS management?

Neurology 2013;81:97-98
DOI 10.1212/01.wnl.0000432104.96450.bc

This information is current as of July 1, 2013

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/81/1/97.2.full

References
This article cites 5 articles, 1 of which you can access for free at:
http://n.neurology.org/content/81/1/97.2.full#ref-list-1

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise