Conclusions and future directions for the REiNS International Collaboration

ABSTRACT

The Response Evaluation in Neurofibromatosis and Schwannomatosis (REiNS) International Collaboration was established with the goal to develop consensus recommendations for the use of endpoints in neurofibromatosis (NF) clinical trials. This supplement includes the first series of REiNS recommendations for the use of patient-reported, functional, and visual outcomes, and for the evaluation of imaging response in NF clinical trials. Recommendations for neurocognitive outcome measures, the use of whole-body MRI in NF, the evaluation of potential biomarkers of disease, and the comprehensive evaluation of functional and patient-reported outcomes in NF are in development. The REiNS recommendations are made based on current knowledge. Experience with the use of the recommended endpoints in clinical trials, development of new tools and technologies, new knowledge of the natural history of NF, and advances in the methods used to analyze endpoints will likely lead to modifications of the currently proposed guidelines, which will be shared with the NF research community through the REiNS Web site www.reinscollaboration.org. Due to the clinical complexity of NF, there is a need to seek expertise from multiple medical disciplines, regulatory agencies, and industry to develop trial endpoints and designs, which will lead to the identification and approval of effective treatments for NF tumor and nontumor manifestations. The REiNS Collaboration welcomes anyone interested in providing his or her expertise toward this effort. Neurology® 2013;81 (Suppl 1):S41–S44

GLOSSARY

NF = neurofibromatosis; PN = plexiform neurofibroma; PRO = patient-reported outcome; QOL = quality of life; REINS = Response Evaluation in Neurofibromatosis and Schwannomatosis; VS = vestibular schwannoma; WBMRI = whole-body MRI.

Neurofibromatosis 1 (NF1), neurofibromatosis 2 (NF2), and schwannomatosis share the predisposition to the development of multiple mostly benign nerve sheath tumors. However, there are distinct differences in the clinical manifestations between NF1, NF2, and schwannomatosis, and there is substantial variability in the development of disease manifestations within each of the forms of NF.1,2 As increasing numbers of clinical trials for NF-related tumor and nontumor manifestations are ongoing, the need for the development of standardized trial endpoints specifically for NF has emerged (see the introduction to this supplement, Plotkin et al.). The aim of the Response Evaluation in Neurofibromatosis and Schwannomatosis (REiNS) International Collaboration is to develop standardized endpoints for clinical trials for NF to allow for meaningful comparisons of trial results and to accelerate the development of active and beneficial agents.

This supplement provides the first series of recommendations of the REiNS collaborative group for endpoints in NF trials. The guidelines proposed in this supplement—for the evaluation of pain (Wolters et al.), hearing and facial function (Plotkin et al.), vision (Fisher et al.), and imaging of response (Dombi et al.)—can be readily incorporated as endpoints into clinical trials.

RECOMMENDATIONS UNDER DEVELOPMENT FROM REiNS WORKING GROUPS

The Neurocognitive, Whole-body MRI, and Biomarker Working Groups are currently preparing recommendations. Learning
disabilities and cognitive impairments are common in patients with NF1 and result in substantial disability.3 Clinical trials of statins for learning disability have been published and others are under way.5 In addition, trials of nonpharmacologic treatments for learning disability (e.g., Cogmed) are in the planning stages. The goal of the Neurocognitive group is to standardize endpoints for these trials to promote comparisons of efficacy between pharmacologic and nonpharmacologic intervention trials.

Tumor involvement in NF can be extensive and in some patients can affect virtually the entire body. Whole-body MRI (WBMRI) is an emerging technique to evaluate the entire tumor burden in the body in a short time (about 45 minutes), and it has been evaluated in patients with NF.5–6 The Whole-body MRI Working Group is tasked with evaluating the reproducibility and potential utility of WBMRI in clinical trials. Finally, the goals of the Biomarker Working Group include the identification of biomarkers of NF manifestations, including markers of disease progression, or of transformation of histologically benign plexiform neurofibromas (PN) to malignant peripheral nerve sheath tumors.

The development of recommendations by REiNS is an ongoing and dynamic process. Below we highlight some challenges for ongoing and future work.

OPTIMAL USE OF FUNCTIONAL ENDPOINTS

Change of tumor size is an important endpoint in clinical trials for benign NF tumors. Drugs that decrease tumor size are considered to be active and worthy of further study. However, to identify the benefits of new treatments and to achieve drug approval, it will be necessary to incorporate functional and patient-reported outcomes (PRO) into clinical trials. The functional measures proposed in this supplement for hearing in NF2 vestibular schwannomas and for acuity in NF1-related PN and NF2-related vestibular schwannomas (VS). Furthermore, the group defines tumor progression and tumor response based on much smaller changes than solid tumor response criteria.4–10 These response criteria were chosen to maximize the identification of active agents and to minimize the duration of patients’ exposure to inactive agents. However, there is a need for additional studies to validate and compare methods of volumetric analysis and to identify the percent changes that can be reliably measured for specific tumor types. Plans are under way to compare currently used methods of volumetric analysis of PN and VS to evaluate whether these can be used interchangeably in clinical trials. We will apply currently established response criteria for pediatric and adult CNS tumors—Response Assessment in Neuro-Oncology (RANO)11,12 and Response Assessment in Pediatric Neuro-Oncology (RAPNO)13—to NF-related CNS tumors such as gliomas and meningiomas, if feasible.

In solid tumors, CT is frequently used to measure change in tumor size. This method may have advantages for NF patients with metal implants, which limit the utility of MRI for volumetric analysis. Studies evaluating the utility of CT for response evaluation in NF are thus another goal of the Tumor Measurement Working Group.

DEVELOPMENT OF IMPROVED IMAGING OUTCOMES

In this supplement, the Tumor Measurement Working Group proposes volumetric tumor measurements as opposed to standard 1- or 2-dimensional measurements for NF1-related PN and NF2-related vestibular schwannomas (VS). Furthermore, the group defines tumor progression and tumor response based on much smaller changes than solid tumor response criteria.4–10 These response criteria were chosen to maximize the identification of active agents and to minimize the duration of patients’ exposure to inactive agents. However, there is a need for additional studies to validate and compare methods of volumetric analysis and to identify the percent changes that can be reliably measured for specific tumor types. Plans are under way to compare currently used methods of volumetric analysis of PN and VS to evaluate whether these can be used interchangeably in clinical trials. We will apply currently established response criteria for pediatric and adult CNS tumors—Response Assessment in Neuro-Oncology (RANO)11,12 and Response Assessment in Pediatric Neuro-Oncology (RAPNO)13—to NF-related CNS tumors such as gliomas and meningiomas, if feasible.

In solid tumors, CT is frequently used to measure change in tumor size. This method may have advantages for NF patients with metal implants, which limit the utility of MRI for volumetric analysis. Studies evaluating the utility of CT for response evaluation in NF are thus another goal of the Tumor Measurement Working Group.
The measurement of small decreases in tumor size allows for identification of active agents. Ultimately, studies that analyze the relationship between tumor size and changes in functional and patient-reported outcomes will be required to assess whether imaging changes can serve as a surrogate for morbidity. For example, while the degree of hearing loss in NF2 does not correlate directly with the size of VS, there may be a correlation between tumor size and morbidity for other tumors. Finally, consideration should be given to evaluating the utility of functional imaging, such as PET or magnetic resonance spectroscopy, in the assessment of response to targeted therapies in future research studies.

Our ultimate goal is to accelerate the identification of active and clinically beneficial agents for NF. The recent US Food and Drug Administration approval of the mammalian target of rapamycin (mTOR) inhibitor everolimus for patients with tuberous sclerosis complex and subependymal giant cell astrocytomas (SEGA)44 and the Janus kinase inhibitor (JAK1/2) ruxolitinib for intermediate and high-risk myelofibrosis13 serve as potential examples for future NF trials. These drugs were approved based on a reduction in tumor volume in patients enrolled in a single-arm trial. Ruxolitinib was approved based on 2 placebo-controlled trials using reduction in spleen volume as a primary endpoint and reduction in patient-reported symptoms as a key secondary endpoint. Overall, the number of patients with NF available for participation in clinical trials is small. It is thus important that the most appropriate trial designs and endpoints are utilized. Early interaction and collaboration with regulatory agencies and industry will be critical to this process as trials with new endpoints and designs are developed.

DISCLOSURE

B. Widemann is a member of the scientific advisory board of the Neurofibromatosis Therapeutic Acceleration Program. She is a member of the editorial board of \textit{The Oncologist} and an associate editor of \textit{Frontiers in Pediatrics}. J. Blakely received travel support from the Children’s Tumor Foundation, the American Academy of Neurology, and the American Society of Clinical Oncology. She receives research support from GlaxoSmithKline, Sanofi-Aventis, Eli Lilly, the Cancer Therapy Evaluation Program, and the Children’s Tumor Foundation. E. Dombi reports no disclosures. M. Fisher received reimbursement from the Children’s Tumor Foundation to attend their annual Neurofibromatosis Conference, is funded by the Department of Defense (W81XWH-12-1-0155, W81XWH-08-1-0051), Thrasher Research Fund, the Children’s Tumor Foundation, and Sarcoma Alliance for Research through Collaboration, and received research support from the Pediatric Low Grade Astrocytoma Foundation, Bayer, Children’s Discovery Institute, NIH (NR009651-01), and the Department of Defense (W81XWH-08-1-0051). C. Hanemann received a travel grant from Baxter International and receives grant support from Norsartis, The Brain Tumor Charity, CR-UK, and Action Medical Research. K. Walsh reports no disclosures. P. Wolters received research support from the Childhood Brain Tumor Foundation and holds stock options in Bristol-Meyers-Squibb, General Electric, and Zimmer Holdings, Inc. S. Plotkin has been reimbursed by the American Academy of Neurology and the Children’s Tumor Foundation for travel for educational activities. He has received research support from the Department of Defense (W81XWH-09-1-0182, N0956320, W81XWH-12-1-0155, PI), the Children’s Tumor Foundation (PI), and Johns Hopkins Medical Institutes (site PI). Go to Neurology.org for full disclosures.

Received May 10, 2013. Accepted in final form September 5, 2013.

REFERENCES

10. Nguyen R, Kluwe L, Fuerstetter C, Kentrich M, Friedrich RE, Maunzer VF. Plexiform neurofibromas...

Conclusions and future directions for the REiNS International Collaboration
Brigitte C. Widemann, Jaishri O. Blakeley, Eva Dombi, et al.
Neurology 2013;81;S41-S44
DOI 10.1212/01.wnl.0000435748.79908.c5

This information is current as of November 18, 2013

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/81/21_supplement_1/S41.full

Supplementary Material
Supplementary material can be found at:
http://n.neurology.org/content/suppl/2013/11/16/81.21_supplement_1.S41.DC1

References
This article cites 15 articles, 2 of which you can access for free at:
http://n.neurology.org/content/81/21_supplement_1/S41.full#ref-list-1

Citations
This article has been cited by 2 HighWire-hosted articles:
http://n.neurology.org/content/81/21_supplement_1/S41.full##otherarticles

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Clinical trials Methodology/study design
http://n.neurology.org/cgi/collection/clinical_trials_methodology_study_design

Nerve tumor
http://n.neurology.org/cgi/collection/nerve_tumor

Neurofibromatosis
http://n.neurology.org/cgi/collection/neurofibromatosis

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise