Editors’ Note: In response to an inquiry by Drs. Lerner and Miodownik, American Academy of Neurology (AAN) guideline authors Bhidayasiri et al. discuss how relevant studies are analyzed and classified for potential inclusion in AAN practice guidelines. The painstaking process used in the development of AAN practice guidelines is described in detail in the Clinical Practice Guideline Process Manual (http://tools.aan.com/globals/axon/assets/9023.pdf) available to AAN members and the public on the AAN Web site. —Megan Alcauskas, MD, and Robert C. Griggs, MD

DISTINCTION OF SEROPOSITIVE NMO SPECTRUM DISORDER AND MS BRAIN LESION DISTRIBUTION

Ilya Kister, Yulin Ge, Joseph Herbert, New York; Tim Sinnecker, Jens Wuerfel, Friedemann Paul, Berlin: Matthews et al. attempted to differentiate seropositive neuromyelitis optica spectrum disorders (NMO-SD) from multiple sclerosis (MS) based on brain MRI records. They suggested that none of the patients with NMO-SD exhibited “Dawson fingers” on brain MRI.

James Dawson described these characteristic lesions in MS pathologically as “wedge-shaped areas with broad base to the ventricle, and extensions into adjoining tissue in the form of finger-like processes or ampullae, in each of which a central vessel could usually be found.” Ultra-high-field MRI allows for in vivo visualization of small central veins within Dawson fingers.

Our 2 groups used ultra-high-field MRI to image brains in NMO-SD and MS and independently reported that periventricular lesions are rare in NMO-SD and lack central venule. This supports the authors’ finding that the presence of Dawson fingers constitutes strong evidence against the diagnosis of NMO-SD. However, for this criterion to be useful in clinical practice, an unambiguous definition of what constitutes Dawson finger on conventional brain MRI must be adopted.

It would be helpful if the authors could supply a definition based on their experience with NMO-SD and MS that would more formally specify lesion morphology. This should include details on borders, dimensions, and orientation on axial and sagittal T2-weighted sequences. In addition, a defined distance from lateral ventricles and other periventricular lesions would be helpful.

© 2013 American Academy of Neurology


VARICELLA-ZOSTER VIRUS ACUTE MYELITIS IN A PATIENT WITH MS TREATED WITH NATALIZUMAB

Bertrand Bourre, Romain Lefaucheur, Patrick Ahtoy, Floriane Travers, Damien Fetter, Rouen, France: Yeung et al. studied a case of varicella-zoster virus (VZV) myelitis in a patient with MS treated with natalizumab (NTZ). We wanted to stress another manifestation of VZV infection in NTZ-treated patients. A patient with MS recently came to our institution for thunderclap headaches. She had received NTZ for 14 months. She was afebrile and complained of photophobia but had no meningeal signs. Neurologic examination was normal and she had no skin lesions. Brain imaging revealed neither bleeding nor vascular malformation and we performed a lumbar puncture. We noted elevated protein (0.68 g/L), normal glucose (3.5 g/L), and 33 leukocytes with a majority of lymphocytes and no organisms. CSF PCR analyses were negative for herpes simplex virus, Epstein-Barr virus, cytomegalovirus, adenovirus, and enterovirus, but positive for VZV. She was treated with IV acyclovir for 14 days with disappearance of headaches. Repeat CSF examination after 10 days was normal.

Yeung et al. had difficulty differentiating VZV myelitis from a relapse and concluded that neurologists should not underestimate VZV infection in NTZ-treated patients. We also wanted to emphasize the multifaceted presentation of VZV infection and
make other physicians aware of these adverse events so that appropriate treatment can be initiated.

© 2013 American Academy of Neurology


EVIDENCE-BASED GUIDELINE: TREATMENT OF TARDIVE SYNDROMES: REPORT OF THE GUIDELINE DEVELOPMENT SUBCOMMITTEE OF THE AMERICAN ACADEMY OF NEUROLOGY

Vladimir Lerner, Chanoch Miodownik, Be’er Sheva, Israel: We read the article by Bhidayasiri et al.1 with interest. We found some inaccuracies. The authors cited only one of our articles regarding treatment of tardive dyskinesia (TD).2 Even though the authors performed a search from 1966 to 2011, they did not include 2 studies published in 2007 that could broaden the knowledge about new options for TD management.3,4 The first deals with vitamin B6 and the other with piracetam. Both studies include large samples (50 and 40 subjects, respectively) and could be considered Class I evidence according to the authors’ classification. Inclusion of this information could positively influence the weight and emphasize the significance of these medications. Our experience shows that different types of TD react uniquely to different types of medications.

Author Response: Roongroj Bhidayasiri, Bangkok, Thailand; Stanley Fahn, New York; Gary S. Gronseth, Kansas City, KS; Kelly L. Sullivan, Theresa A. Zesiewicz, Tampa, FL: We appreciate the authors’ comments and interest in our article.1 We agree that various forms of tardive syndromes (TDS) can respond to medications or interventions differently and that well-designed randomized controlled trials are needed.

Effective trials should feature specific TDS inclusion criteria and subtypes to determine the most effective interventions for TDS symptoms. As the authors noted, 2 studies on vitamin B6 and piracetam were not included in our original analysis.3,4 The first study, a double-blind, placebo-controlled trial on vitamin B6 treatment in 50 inpatients with schizophrenia/schizoaffective disorders, was rated Class III for no allocation concealment and a >20% (14/50) dropout rate.5 The second study of 40 patients with schizophrenic/schizoaffective disorders who received piracetam or placebo over 4 weeks was rated Class III for the same reasons (9 dropouts).6 After applying the AAN’s classification scheme for rating therapeutic articles,5 we found the data remain insufficient to support or refute use of vitamin B6 and piracetam as TDS treatments.

Although the AAN endeavors to find all pertinent literature, as the AAN process manual prescribes,7 we realize that no literature search is completely effective, and we thank the authors for alerting us to these 2 studies. We corrected errors for an article cited in table e-1 and this table is updated online.2

Editor’s Note: A Correction for this article is published on page 1966 of this issue.

© 2013 American Academy of Neurology


Author disclosures are available upon request (journal@neurology.org).
Varicella-zoster virus acute myelitis in a patient with MS treated with natalizumab
Bertrand Bourre, Romain Lefaucheur, Patrick Ahtoy, et al.

Neurology 2013;81;1966-1967
DOI 10.1212/01.wnl.0000439052.05262.1d

This information is current as of November 25, 2013

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/81/22/1966.2.full

References
This article cites 1 articles, 1 of which you can access for free at:
http://n.neurology.org/content/81/22/1966.2.full#ref-list-1

Permissions & Licensing
Information about reproducing this article in parts (figures,tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise