Editors’ Note: The inability to visualize nigrosome 1 on a 7T brain MRI is suggestive of Parkinson disease, as described by Blazejewska et al. Mueller et al. report that similar sensitive and specific findings can be obtained with the more widely available 3T MRI. Replication of this finding on a larger cohort is warranted. In response to Liguori et al., Friedman et al. caution against diagnosing idiopathic intracranial hypertension syndrome on the basis of elevated opening pressure alone without other objective findings.

—Chafic Karam, MD, and Robert C. Griggs, MD

VISUALIZATION OF NIGROSOme 1 AND ITS LOSS IN PD: PATHOANATOMICAL CORRELATION AND IN VIVO 7T MRI

Christoph Mueller, Bernadette Pinter, Eva Reiter, Michael Schocke, Christoph Scherfler, Werner Poewe, Klaus Seppi, Innsbruck, Austria: Blazejewska et al.1 identified a hyperintense ovoid area within the dorsolateral border of the otherwise hypointense pars compacta of the substantia nigra (SNc) in healthy controls (HC) and the absence of this MRI feature2 in patients with Parkinson disease (PD) using T2*-weighted 7T MRI. Moreover, the postmortem 7T MRI with histopathologic correlations suggested that this MRI feature corresponded to nigrosome 1. We studied this MRI feature in consecutively recruited HC and patients with PD3 (16 HC, 53 PD; mean ± SD age, y: HC 54 ± 10, PD 67 ± 8; proportion female: HC 68%, PD 28%; mean ± SD disease duration, y: 8 ± 4) using susceptibility-weighted imaging (SWI) at 3T (Siemens Verio MRI scanner, Munich, Germany). Datasets of 2 HC and 18 patients with PD were not of diagnostic quality due to patient motion. In the remaining patients, presence of dorsolateral hyperintensity within the otherwise hypointense SNc was identified in 14/14 HC and 5/35 patients with PD. Absence of this MRI feature resulted in 85.7% sensitivity and 100% specificity to detect PD. We suggest that this MRI feature reported at 7T MRI using T2*-weighted sequences1 can also be detected at 3T using SWI sequences and that absence of this MRI feature might have potential for diagnosing PD.

Author Response: Anna I. Blazejewska, Stefan T. Schwarz, Nin Bajaj, Dorothee P. Auer, Penny A. Gowland, Nottingham, England: Following our article on the application of 7T T2*-MRI for PD diagnostics,1 we were delighted to read about the successful use of 3T SWI for detection of nigrosome 1 absence in the substantia nigra in patients with PD by Mueller et al. We also studied the application of 3T SWI in PD cohorts as a fast and easily applicable diagnostic tool. Early findings indicated a sensitivity of 89%–95% and a specificity of 91% of nigrosome 1 detection using 3T MRI,4 which are similar to the results from the 7T MRI study.

Of interest, our rate of nondiagnostic scans was lower than that of Mueller et al. (29%). Their study in 14 controls and 35 patients with PD needs replication with a more robust protocol and in a larger cohort including atypical parkinsonism. Translation of the discovery made at 7T to 3T is particularly promising due to the general availability of 3T scanners. In addition, the lack of postprocessing required for nigrosome detection indicates a potential viable alternative to the more expensive nuclear medical techniques currently licensed.

© 2014 American Academy of Neurology


REVISED DIAGNOSTIC CRITERIA FOR THE PSEUDOTUMOR CEREBRI SYNDROME IN ADULTS AND CHILDREN

Claudio Liguori, Andrea Romigi, Maria Albanelle, Maria G. Marciani, Fabio Placidi, Rome: Friedman et al.1 updated the diagnostic criteria for...
Visualization of nigrosome 1 and its loss in PD: Pathoanatomical correlation and in vivo 7T MRI
Christoph Mueller, Anna I. Blazejewska, Bernadette Pinter, et al.
Neurology 2014;82;1752
DOI 10.1212/WNL.0000000000000398

This information is current as of May 12, 2014

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/82/19/1752.1.full

References
This article cites 4 articles, 2 of which you can access for free at:
http://n.neurology.org/content/82/19/1752.1.full#ref-list-1

Citations
This article has been cited by 1 HighWire-hosted articles:
http://n.neurology.org/content/82/19/1752.1.full##otherarticles

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise