Amaurotic and ophthalmoplegic presentation of Balint syndrome

A 54-year-old woman developed acute hypertensive encephalopathy associated with acetaminophen-induced liver failure. Examination showed blindness with absence of horizontal and vertical volitional and reflex saccades (video on the Neurology® Web site at Neurology.org, first segment). MRI showed biparieto-occipital signal abnormalities consistent with the posterior reversible encephalopathy syndrome (PRES) (figure). Within 24 hours, visual acuity and eye movements improved, but the patient developed ocular apraxia (increased saccadic latency), optic ataxia (impaired visual navigation), and simultanagnosia (inability to recognize more than a single object): the Balint syndrome (video, second segment). This illustrates that a severe expression of oculomotor apraxia can mimic complete ophthalmoplegia1 and that Balint syndrome may occur at the onset2 and during recovery from PRES.

Alberto J. Espay, MD, MSc, FAAN, Scott R. Allen, MD

From the Department of Neurology, UC Neuroscience Institute, Movement Disorders Center, University of Cincinnati, OH.

Author contributions: Alberto J. Espay: drafting/revising the manuscript, study concept or design, analysis or interpretation of data, accepts responsibility for conduct of research and final approval, acquisition of data. Scott R. Allen: drafting/revising the manuscript, study concept or design, analysis or interpretation of data, accepts responsibility for conduct of research and final approval, acquisition of data.

Study funding: No targeted funding reported.

Disclosure: A. Espay is supported by the K23 career development award (NIMH, 1K23MH092735); has received grant support from CleveMed/Great Lakes Neurotechnologies, Davis Phinney Foundation, and Michael J. Fox Foundation; has received personal compensation as a consultant/scientific advisory board member for Solvay (now Abbvie), Chelsea Therapeutics, TEVA, Impax, Merz, Solstice Neurosciences, Eli Lilly, and USWorldMeds; and has received honoraria from Novartis, UCB, TEVA, the American Academy of Neurology, and the Movement Disorders Society. He serves as Associate Editor of Movement Disorders and Frontiers in Movement Disorders. Scott R. Allen: has received research funding from the National Institutes of Health (grants K23 MH092735 and RO1 NS076944); has received honoraria from UCB, Teva, and Solstice Neurosciences; has served as consultant to UCB, Teva, and Medtronic; and has served as scientific advisory board member for Solvay (now Abbvie), Chelsea Therapeutics, and Intercranial Therapeutics. He is a co-founder of BioReliance, a company that provides clinical trial services. He is founder and CEO of Neurophye, a public company that develops and markets wearable rehabilitation and monitoring devices. The other authors report no competing financial interests.

Axial fluid-attenuated inversion recovery brain MRI demonstrates patchy hyperintensities in the parietal and occipital subcortical regions bilaterally, typical of the vasogenic edema associated with the posterior reversible encephalopathy syndrome.

A 54-year-old woman developed acute hypertensive encephalopathy associated with acetaminophen-induced liver failure. Examination showed blindness with absence of horizontal and vertical volitional and reflex saccades (video on the Neurology® Web site at Neurology.org, first segment). MRI showed biparieto-occipital signal abnormalities consistent with the posterior reversible encephalopathy syndrome (PRES) (figure). Within 24 hours, visual acuity and eye movements improved, but the patient developed ocular apraxia (increased saccadic latency), optic ataxia (impaired visual navigation), and simultanagnosia (inability to recognize more than a single object): the Balint syndrome (video, second segment). This illustrates that a severe expression of oculomotor apraxia can mimic complete ophthalmoplegia1 and that Balint syndrome may occur at the onset2 and during recovery from PRES.

Alberto J. Espay, MD, MSc, FAAN, Scott R. Allen, MD

From the Department of Neurology, UC Neuroscience Institute, Movement Disorders Center, University of Cincinnati, OH.

Author contributions: Alberto J. Espay: drafting/revising the manuscript, study concept or design, analysis or interpretation of data, accepts responsibility for conduct of research and final approval, acquisition of data. Scott R. Allen: drafting/revising the manuscript, study concept or design, analysis or interpretation of data, accepts responsibility for conduct of research and final approval, acquisition of data.

Study funding: No targeted funding reported.

Disclosure: A. Espay is supported by the K23 career development award (NIMH, 1K23MH092735); has received grant support from CleveMed/Great Lakes Neurotechnologies, Davis Phinney Foundation, and Michael J. Fox Foundation; has received personal compensation as a consultant/scientific advisory board member for Solvay (now Abbvie), Chelsea Therapeutics, TEVA, Impax, Merz, Solstice Neurosciences, Eli Lilly, and USWorldMeds; and has received honoraria from Novartis, UCB, TEVA, the American Academy of Neurology, and the Movement Disorders Society. He serves as Associate Editor of Movement Disorders and Frontiers in Movement Disorders. Scott R. Allen: has received research funding from the National Institutes of Health (grants K23 MH092735 and RO1 NS076944); has received honoraria from UCB, Teva, and Solstice Neurosciences; has served as consultant to UCB, Teva, and Medtronic; and has served as scientific advisory board member for Solvay (now Abbvie), Chelsea Therapeutics, and Intercranial Therapeutics. He is a co-founder of BioReliance, a company that provides clinical trial services. He is founder and CEO of Neurophye, a public company that develops and markets wearable rehabilitation and monitoring devices. The other authors report no competing financial interests.

Axial fluid-attenuated inversion recovery brain MRI demonstrates patchy hyperintensities in the parietal and occipital subcortical regions bilaterally, typical of the vasogenic edema associated with the posterior reversible encephalopathy syndrome.

A 54-year-old woman developed acute hypertensive encephalopathy associated with acetaminophen-induced liver failure. Examination showed blindness with absence of horizontal and vertical volitional and reflex saccades (video on the Neurology® Web site at Neurology.org, first segment). MRI showed biparieto-occipital signal abnormalities consistent with the posterior reversible encephalopathy syndrome (PRES) (figure). Within 24 hours, visual acuity and eye movements improved, but the patient developed ocular apraxia (increased saccadic latency), optic ataxia (impaired visual navigation), and simultanagnosia (inability to recognize more than a single object): the Balint syndrome (video, second segment). This illustrates that a severe expression of oculomotor apraxia can mimic complete ophthalmoplegia1 and that Balint syndrome may occur at the onset2 and during recovery from PRES.

Alberto J. Espay, MD, MSc, FAAN, Scott R. Allen, MD

From the Department of Neurology, UC Neuroscience Institute, Movement Disorders Center, University of Cincinnati, OH.

Author contributions: Alberto J. Espay: drafting/revising the manuscript, study concept or design, analysis or interpretation of data, accepts responsibility for conduct of research and final approval, acquisition of data. Scott R. Allen: drafting/revising the manuscript, study concept or design, analysis or interpretation of data, accepts responsibility for conduct of research and final approval, acquisition of data.

Study funding: No targeted funding reported.

Disclosure: A. Espay is supported by the K23 career development award (NIMH, 1K23MH092735); has received grant support from CleveMed/Great Lakes Neurotechnologies, Davis Phinney Foundation, and Michael J. Fox Foundation; has received personal compensation as a consultant/scientific advisory board member for Solvay (now Abbvie), Chelsea Therapeutics, TEVA, Impax, Merz, Solstice Neurosciences, Eli Lilly, and USWorldMeds; and has received honoraria from Novartis, UCB, TEVA, the American Academy of Neurology, and the Movement Disorders Society. He serves as Associate Editor of Movement Disorders and Frontiers in Movement Disorders. Scott R. Allen: has received research funding from the National Institutes of Health (grants K23 MH092735 and RO1 NS076944); has received honoraria from UCB, Teva, and Solstice Neurosciences; has served as consultant to UCB, Teva, and Medtronic; and has served as scientific advisory board member for Solvay (now Abbvie), Chelsea Therapeutics, and Intercranial Therapeutics. He is a co-founder of BioReliance, a company that provides clinical trial services. He is founder and CEO of Neurophye, a public company that develops and markets wearable rehabilitation and monitoring devices. The other authors report no competing financial interests.
Mitigate Opioid Misuse in Your Practice

100 people die from drug overdoses every day in the United States.* Learn how to mitigate opioid misuse in your practice with the AAN’s NeuroPI™ performance improvement module on Chronic Opioid Therapy.

- Helps address both the Performance in Practice (PIP) and Continuing Medical Education (CME) components of Maintenance of Certification (MOC), as mandated by the American Board of Psychiatry and Neurology (ABPN)
- Tackles the timely issue of chronic opioid therapy for non-cancer pain
- Offers measures to address strategies for mitigating opioid misuse
- Features educational resources, links to clinical tools, and patient education materials

Visit www.aan.com/view/neuropi today!

Earn 20 CME Credits Toward MOC with New NeuroPI™ Modules

Choose from the latest lineup of quality modules to join the AAN’s exclusive performance improvement programs designed to help you address both the Performance in Practice (PIP) and Continuing Medical Education (CME) components of Maintenance of Certification (MOC).

- **NEW!** Distal Symmetric Polyneuropathy (DSP) includes eight quality measures, addressing accurate and appropriate evaluation/monitoring of DSP and associated symptoms to guide treatment options, patient safety, and best practices to assist patients in managing their pain and improving quality of life
- **Acute Stroke** addresses six quality measures, including deep vein thrombosis prophylaxis (DVT) for ischemic stroke or intracranial hemorrhage, discharged on antiplatelet therapy, dysphagia screening, rehabilitation service considerations, and more
- **Dementia** includes 10 quality measures addressing underuse of effective services and patient-centered care strategies, and patient safety issues

Learn about all of the other available modules and purchase yours today: www.aan.com/view/neuropi
Amaurotic and ophthalmoplegic presentation of Balint syndrome
Alberto J. Espay and Scott R. Allen

Neurology 2014;82;1844-1845
DOI 10.1212/WNL.0000000000000441

This information is current as of May 19, 2014

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/82/20/1844.full

Supplementary Material
Supplementary material can be found at:
http://n.neurology.org/content/suppl/2014/05/18/82.20.1844.DC1

References
This article cites 2 articles, 0 of which you can access for free at:
http://n.neurology.org/content/82/20/1844.full#ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Clinical neurology examination
http://n.neurology.org/cgi/collection/clinical_neurology_examination
Clinical neurology history
http://n.neurology.org/cgi/collection/clinical_neurology_history
Ocular motility
http://n.neurology.org/cgi/collection/ocular_motility

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise