“Subarachnoid hemorrhage” from decreased contrast elimination after therapeutic hypothermia

A 50-year-old woman underwent therapeutic hypothermia after a witnessed cardiac arrest and cardiac catheterization. A 24-hour head CT (figure 1) showed diffuse hyperattenuation in the subarachnoid space and was reported as subarachnoid hemorrhage. Repeat CT at 48 hours (figure 2) showed significant clearing of the “subarachnoid hemorrhage.”

DISCUSSION
Cerebrocirculatory arrest and reperfusion causes injury that breaks down the blood–brain barrier. In patients undergoing contrast imaging, there may be active extravasation of contrast into the subarachnoid space. Hypothermia alters contrast viscosity, decreases glomerular filtration, and subsequently decreases elimination of the contrast. It is important to recognize such mimickers of subarachnoid hemorrhage in the era of hypothermia.

AUTHOR CONTRIBUTIONS
Dr. Wazim Mohamed: manuscript concept, design, research, and preparation. Dr. Preet Varade: manuscript preparation and preparation.
of images. Dr. Gregory M. Norris: manuscript concept, design, and supervision.

STUDY FUNDING
No targeted funding reported.

DISCLOSURE
W. Mohamed and P. Varade report no disclosures. G. Norris is on the speaker bureau for UCB, which manufactures Vimpat (lacosamide). Go to Neurology.org for full disclosures.

REFERENCES
Teaching NeuroImages: "Subarachnoid hemorrhage" from decreased contrast elimination after therapeutic hypothermia
Wazim Mohamed, Preet Varade and Gregory M. Norris

Neurology 2014;82:e44-e45
DOI 10.1212/WNL.0000000000000088

This information is current as of February 3, 2014

<table>
<thead>
<tr>
<th>Updated Information & Services</th>
<th>including high resolution figures, can be found at: http://n.neurology.org/content/82/5/e44.full</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplementary Material</td>
<td>Supplementary material can be found at: http://n.neurology.org/content/suppl/2014/02/02/82.5.e44.DC1</td>
</tr>
<tr>
<td>References</td>
<td>This article cites 2 articles, 1 of which you can access for free at: http://n.neurology.org/content/82/5/e44.full#ref-list-1</td>
</tr>
<tr>
<td>Citations</td>
<td>This article has been cited by 1 HighWire-hosted articles: http://n.neurology.org/content/82/5/e44.full##otherarticles</td>
</tr>
<tr>
<td>Subspecialty Collections</td>
<td>This article, along with others on similar topics, appears in the following collection(s): CT http://n.neurology.org/cgi/collection/ct Subarachnoid hemorrhage http://n.neurology.org/cgi/collection/subarachnoid_hemorrhage</td>
</tr>
<tr>
<td>Permissions & Licensing</td>
<td>Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: http://www.neurology.org/about/about_the_journal#permissions</td>
</tr>
<tr>
<td>Reprints</td>
<td>Information about ordering reprints can be found online: http://n.neurology.org/subscribers/advertise</td>
</tr>
</tbody>
</table>