A 15-year-old boy presented with a history of an early-onset spastic paraparesis that progressed toward a severe quadriparesis (video on the Neurology® Web site at www.neurology.org), hypokinesia and bradykinesia, dysphagia, dysarthria, and hypomimia. Delayed motor evoked potentials and corticobulbar tract signal abnormality on brain MRI (figure) suggested corticospinal tract involvement. Cognitive functioning was preserved (Leiter-R IQ 86). ALS2 gene sequencing detected a homozygous c.2992C>T (p.R998X) substitution in exon 18 and confirmed the diagnosis of infantile ascending hereditary spastic paralysis (IAHSP).1

IAHSP may be misdiagnosed as a static encephalopathy because of its slow progression. Children with slowly progressive quadriparesis should be tested for ALS2 gene mutations.2

AUTHOR CONTRIBUTIONS
Mario Mastrangelo, Pia Bernasconi, and Paola De Liso contributed to the design and the conceptualization of the study and to drafting the manuscript. Sara Bertino and Caterina Caputi contributed to recording the video and drafting the manuscript. Vincenzo Leuzzi contributed to revising the manuscript.

STUDY FUNDING
No targeted funding reported.

DISCLOSURE
The authors report no disclosures relevant to the manuscript. Go to Neurology.org for full disclosures.

REFERENCES

© 2014 American Academy of Neurology
Teaching Video NeuroImages: Clinical course of infantile ascending hereditary spastic paralysis
Mario Mastrangelo, Pia Bernasconi, Paola De Liso, et al.

Neurology 2014;82;e61
DOI 10.1212/WNL.0000000000000117

This information is current as of February 17, 2014

<table>
<thead>
<tr>
<th>Updated Information & Services</th>
<th>including high resolution figures, can be found at: http://n.neurology.org/content/82/7/e61.full</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplementary Material</td>
<td>Supplementary material can be found at: http://n.neurology.org/content/suppl/2014/02/15/82.7.e61.DC2 http://n.neurology.org/content/suppl/2014/02/15/82.7.e61.DC1</td>
</tr>
<tr>
<td>References</td>
<td>This article cites 2 articles, 1 of which you can access for free at: http://n.neurology.org/content/82/7/e61.full#ref-list-1</td>
</tr>
<tr>
<td>Subspecialty Collections</td>
<td>This article, along with others on similar topics, appears in the following collection(s): All Clinical Neurology http://n.neurology.org/cgi/collection/all_clinical_neurology All Genetics http://n.neurology.org/cgi/collection/all_genetics All Pediatric http://n.neurology.org/cgi/collection/all_pediatric Clinical neurology examination http://n.neurology.org/cgi/collection/clinical_neurology_examination MRI http://n.neurology.org/cgi/collection/mri</td>
</tr>
<tr>
<td>Permissions & Licensing</td>
<td>Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: http://www.neurology.org/about/about_the_journal#permissions</td>
</tr>
<tr>
<td>Reprints</td>
<td>Information about ordering reprints can be found online: http://n.neurology.org/subscribers/advertise</td>
</tr>
</tbody>
</table>