Locomotion training using voluntary driven exoskeleton (HAL) in acute incomplete SCI

A 34-year-old man had a traumatic thoracic spinal cord injury, with vertebral fracture and a right acetabulum fracture. Dorsal spinal fusion of T6 through T9 was performed on admission. The initial American Spinal Injury Association (ASIA) Impairment Scale (C) showed incomplete motor T10 lesion.

Exoskeletal locomotion training with hybrid assistive limb\(^1\) started 77 days post trauma after radiologic confirmation of consolidation of the acetabulum fracture.

There was recovery of motor functions and walking abilities (video 1 on the Neurology\(^\text{®}\) Web site at Neurology.org) throughout 12 weeks of locomotion training\(^2\) with an increase in Walking Index for Spinal Cord Injury II (WISCI-II) score from 8 to 18 (video 2); conversion to ASIA D occurred.

Oliver Cruciger, MD, Martin Tegenthoff, MD, Peter Schwenkreis, MD, Thomas A. Schildhauer, MD, Mirko Aach, MD

From the Departments of Spinal Cord Injuries (O.C., M.A.), Neurology (M.T., P.S.), and General and Trauma Surgery (T.A.S.), BG University Hospital Bergmannsheil, Bochum, Germany.

Author contributions: Dr. Cruciger: concept, acquisition and data, design and analysis. Prof. Dr. Schwenkreis: critical revision of the manuscript, supervision. Prof. Dr. Tegenthoff: critical revision of the manuscript, supervision. Prof. Dr. Schildhauer: critical revision of the manuscript, supervision. Dr. Aach: concept, design, acquisition and data, supervision.

Study funding: No targeted funding reported.

Disclosure: The authors report no disclosures relevant to the manuscript. Go to Neurology.org for full disclosures.

Correspondence to Dr. Cruciger: oliver.cruciger@bergmannsheil.de

Locomotion training using voluntary driven exoskeleton (HAL) in acute incomplete SCI
Oliver Cruciger, Martin Tegenthoff, Peter Schwenkreis, et al.
Neurology 2014;83;474
DOI 10.1212/WNL.0000000000000645

This information is current as of July 28, 2014

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/83/5/474.full

Supplementary Material
Supplementary material can be found at:
http://n.neurology.org/content/suppl/2014/07/26/83.5.474.DC1

References
This article cites 2 articles, 0 of which you can access for free at:
http://n.neurology.org/content/83/5/474.full#ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Rehabilitation
http://n.neurology.org/cgi/collection/all_rehabilitation
Gait disorders/ataxia
http://n.neurology.org/cgi/collection/gait_disorders_ataxia
Spastic paraplegia
http://n.neurology.org/cgi/collection/spastic_paraplegia
Spinal cord trauma
http://n.neurology.org/cgi/collection/spinal_cord_trauma
Spinal cord trauma; see Trauma/spinal cord trauma
http://n.neurology.org/cgi/collection/spinal_cord_trauma-see_trauma-s spinal_cord_trauma

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise