Signal hyperintensity of the callosum after ventriculoperitoneal shunting

A 66-year-old man underwent ventriculoperitoneal shunting for communicating hydrocephalus. MRI 10 months postoperatively, done for transient headache, showed new fluid-attenuated inversion recovery/T2 hyperintensities within the corpus callosum (figure), while examination revealed improved gait and bladder control with no evidence of a callosal disconnection syndrome.

Fluid-attenuated inversion recovery MRI before (A, B) and after (C-E) ventriculoperitoneal shunting shows postoperative ventricular decompression and hyperintensities involving the body of the corpus callosum, best illustrated on the sagittal view (E).
Prominent signal hyperintensity within the callosum, often sparing the splenium, follows ventriculoperitoneal shunting in a minority of patients with severe, chronic hydrocephalus. This phenomenon may arise from interstitial edema after decompression of the callosum against the falx. While striking, MRI changes are clinically unapparent, and familiarity with this imaging finding is important so as to avoid unnecessary interventions.

Joseph M. Ferrara, MD
From Virginia Tech/Va Tech School of Medicine, Roanoke.
Study funding: No targeted funding reported.
Disclosure: The author reports no disclosures relevant to the manuscript. Go to Neurology.org for full disclosures.
Correspondence to Dr. Ferrara: jmferrara@carilionclinic.org

Signal hyperintensity of the callosum after ventriculoperitoneal shunting
Joseph M. Ferrara

Neurology 2015;84;1609-1610
DOI 10.1212/WNL.0000000000001464

This information is current as of April 13, 2015

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/84/15/1609.full

References
This article cites 2 articles, 1 of which you can access for free at:
http://n.neurology.org/content/84/15/1609.full#ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Clinical Neurology
http://n.neurology.org/cgi/collection/all_clinical_neurology
MRI
http://n.neurology.org/cgi/collection/mri

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise