Teaching NeuroImages: Giant fetal arachnoid cyst with favorable neurologic outcome

A 29-year-old woman was referred after an ultrasound at 24 weeks' gestation demonstrated a 1.8-cm intracranial cyst. Fetal MRI at 29 weeks (figure 1) showed a large cyst anterior to the brainstem measuring 3.4 × 1.7 cm with associated mass effect. Postnatal MRI at age 11 months (figure 2) confirmed the large suprasellar-prepontine arachnoid cyst (SPAC) with mass effect on the brainstem. Neurologic examination at age 17 months revealed no gross neurodevelopmental deficits and no intervention was required. SPACs comprise 5%–12% of arachnoid cysts and are often symptomatic, with signs of hydrocephalus or mass effect, and may require surgery.

AUTHOR CONTRIBUTIONS
Dr. Sanapo designed and drafted the article. Dr. Bartolini contributed to the design and drafting of the article. Dr. Chang contributed to the design of the article and reviewed the manuscript. Dr. Vezina contributed to the design of the article, reviewed the manuscript, and interpreted the fetal and postnatal MRI.

From the Fetal Medicine Institute (L.S.), the Neonatal Neurology Program (T.C.), Department of Neurology (L.B.), and the Neuroradiology Program and Neuro MR, Division of Diagnostic Imaging and Radiology (G.V.), Children’s National Health System, Washington, DC.

Go to Neurology.org for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.
STUDY FUNDING
No targeted funding reported.

DISCLOSURE
L. Sanapo reports no disclosures relevant to the manuscript. L. Bartolini is a member of the editorial team, Resident & Fellow Section, Neurology®. T. Chang and G. Vezina report no disclosures relevant to the manuscript. Go to Neurology.org for full disclosures.

REFERENCES
Teaching NeuroImages: Giant fetal arachnoid cyst with favorable neurologic outcome
Laura Sanapo, Luca Bartolini, Taeun Chang, et al.
Neurology 2015;84:e160-e161
DOI 10.1212/WNL.0000000000001596

This information is current as of May 18, 2015

<table>
<thead>
<tr>
<th>Updated Information & Services</th>
<th>including high resolution figures, can be found at: http://n.neurology.org/content/84/20/e160.full</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplementary Material</td>
<td>Supplementary material can be found at: http://n.neurology.org/content/suppl/2015/05/16/WNL.0000000000001596.DC1</td>
</tr>
<tr>
<td>References</td>
<td>This article cites 2 articles, 0 of which you can access for free at: http://n.neurology.org/content/84/20/e160.full#ref-list-1</td>
</tr>
<tr>
<td>Subspecialty Collections</td>
<td>This article, along with others on similar topics, appears in the following collection(s): All Pediatric http://n.neurology.org/cgi/collection/all_pediatric MRI http://n.neurology.org/cgi/collection/mri</td>
</tr>
<tr>
<td>Permissions & Licensing</td>
<td>Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: http://www.neurology.org/about/about_the_journal#permissions</td>
</tr>
<tr>
<td>Reprints</td>
<td>Information about ordering reprints can be found online: http://n.neurology.org/subscribers/advertise</td>
</tr>
</tbody>
</table>