Teaching NeuroImages: Ornithine transcarbamylase deficiency revealed by a coma in a pregnant woman

A 32-year-old pregnant (20 weeks of amenorrhea) woman, after change in dietary intake (due to a trip to Korea), developed over 3 weeks progressive neuropsychological disorders associated with behavior disorders. The patient rapidly worsened, and had impaired consciousness and a coma. Biological tests showed hyperammonemia (173 \(\mu \text{mol/L} \)), glutamine chromatographic peak, and increased urinary orotic acid concentration. Brain MRI (figure 1) and spectroscopy (figure 2) findings were consistent with urea cycle disorders.\(^1\,2\) A novel heterozygous mutation p.Ala209Glu (c.626C\(\rightarrow \)A) in \(OTC \) gene was identified. She was treated with sodium benzoate, sodium phenylacetate, citrulline, hemofiltration, and reduced protein intake. Consciousness improved, and pregnancy was carried to completion, but mild cognitive impairment persisted 3 months later. The baby girl also carried the mutation but had no sequelae at 11 months.

AUTHOR CONTRIBUTIONS
Pierre Bailly and Jean-Baptiste Noury took care of the patient in the ICU and wrote the article. Serge Timsit’s opinion was requested to confirm diagnosis. He read and corrected the article. Douraied Ben Salem performed the MRI. He read and corrected the article.

STUDY FUNDING
No targeted funding reported.

DISCLOSURE
The authors report no disclosures relevant to the manuscript. Go to Neurology.org for full disclosures.

REFERENCES
Increased levels of glutamine-glutamate (Glx) and slight decrease in levels of myo-inositol (mI). The arrow indicates Glx peaks. Typical MRI and MRS findings in ornithine transcarbamylase deficiency are T1 and T2 hypersignals, located in the cerebral cortex, preferentially in peri-insular regions and the basal ganglia and an increase in Glx. This is due to the excess of ammonia and is not pathognomonic of urea cycle disorders. Cr = creatine; Cho = choline; NAA = N-acetyl aspartate; TE = echo time.
Teaching NeuroImages: Ornithine transcarbamylase deficiency revealed by a coma in a pregnant woman
Pierre Bailly, Jean-Baptiste Noury, Serge Timsit, et al.
Neurology 2015;85:e146-e147
DOI 10.1212/WNL.0000000000002131

This information is current as of November 16, 2015

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/85/20/e146.full

Supplementary Material
Supplementary material can be found at:
http://n.neurology.org/content/suppl/2015/11/14/WNL.0000000000002131.DC1

References
This article cites 2 articles, 0 of which you can access for free at:
http://n.neurology.org/content/85/20/e146.full#ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Genetics
http://n.neurology.org/cgi/collection/all_genetics
Coma
http://n.neurology.org/cgi/collection/coma
Critical care
http://n.neurology.org/cgi/collection/critical_care
Metabolic disease (inherited)
http://n.neurology.org/cgi/collection/metabolic_disease_inherited
MRI
http://n.neurology.org/cgi/collection/mri

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise