A 15-year-old boy with sickle cell disease became unresponsive after sudden-onset headache. There was no antecedent trauma. A head CT scan demonstrated subarachnoid hemorrhage at the medulla (figure). Magnetic resonance angiography of the head and neck identified the patient’s known bilateral internal carotid artery stenosis (a moyamoya-like arteriopathy associated with stroke in sickle cell disease).

(A) Head CT at time of presentation. The black arrow indicates a hyperdense signal surrounding dark spinal cord (white arrow) in subarachnoid space, concerning for subarachnoid hemorrhage. (B) Magnetic resonance angiogram (MRA) of the head and neck 2 years prior to presentation. Arrows indicate bilateral internal carotid stenosis. (C) MRA of the head and neck during hospitalization identifies tapered appearance of the V4 segment of the right vertebral artery (arrow), consistent with dissection. Other segments of the vertebral artery are also labeled: V2 (pars transversaria) and V3 (atlas loop). (D) Digital subtraction angiogram of a right vertebral injection with arrow indicating the luminal narrowing corresponding to the region of dissection.

Download teaching slides: Neurology.org
and a new right vertebral artery dissection, which was confirmed on conventional angiography (figure). Prior MRI performed as part of routine cerebral monitoring did not reveal any preexisting abnormality of the vertebral artery.

The V4 segment of the vertebral artery has the lowest risk of dissection compared to other segments. However, due to its intracranial location, dissection at V4 can cause subarachnoid hemorrhage and mimic aneurysmal rupture.1

AUTHOR CONTRIBUTIONS
Dr. Siegler: conception of the idea of the manuscript, drafting of the original manuscript, preparation of images, and critical revisions to the manuscript for important intellectual content. Dr. Banwell: drafting of the manuscript and critical revisions to the manuscript for important intellectual content. Dr. Ichord: drafting of the manuscript and critical revisions to the manuscript for important intellectual content.

STUDY FUNDING
No targeted funding reported.

DISCLOSURE
J. Siegler is a member of the Neurology® Resident & Fellow Section. He reports no competing financial interests. B. Banwell reports no disclosures relevant to the manuscript. R. Ichord receives grant support from the NIH. Go to Neurology.org for full disclosures.

REFERENCE
Teaching NeuroImages: Intracranial vertebral dissection in a 15-year-old boy with sickle cell disease
James E. Siegler, Brenda Banwell and Rebecca N. Ichord
Neurology 2016;87:e290-e291
DOI 10.1212/WNL.0000000000003439

This information is current as of December 12, 2016

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/87/24/e290.full

Supplementary Material
Supplementary material can be found at:
http://n.neurology.org/content/suppl/2016/12/12/WNL.0000000000003439.DC1

References
This article cites 1 articles, 1 of which you can access for free at:
http://n.neurology.org/content/87/24/e290.full#ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Pediatric stroke; see Cerebrovascular Disease/Childhood stroke
http://n.neurology.org/cgi/collection/pediatric_stroke_see_cerebrovascular_disease-childhood_stroke

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise

Neurology © is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright © 2016 American Academy of Neurology. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.