Teaching NeuroImages: Usefulness of susceptibility-weighted sequences after traumatic brain injury

Three weeks after severe traumatic brain injury (pedestrian hit by a car) and correction of initial intracranial hypertension, a brain MRI is performed in a 22-year-old woman, who remains in a comatose state (Glasgow Coma Scale at 4, with withdrawal to painful stimuli; abolition of photomotor reflex; persistence of corneal and cough reflexes). Fluid-attenuated inversion recovery and T2*-weighted gradient-echo sequences reveal subtle hyperintensities within the brainstem. On susceptibility-weighted imaging, extensive diffuse axonal injuries are identified in the brainstem, thalami, corpus callosum, and frontal lobes, which explain the clinical state (figure). Susceptibility-weighted imaging is a gradient-echo sequence combining phase and magnitude information.

Extensive microhemorrhage compatible with diffuse axonal injuries along the brainstem, thalami, corpus callosum, and frontal and temporal lobes, which are not visible with classic T2*-weighted gradient-echo sequence (A) but only with susceptibility-weighted MRI (B, arrows).

From the Service de Réanimation Neurologique (T.R., F.D.) and Service de Neuro Radiologie (L.C.), Hôpital Neurologique, Hospices Civils de Lyon, Bron; and Université de Lyon CREATIS (T.R.), CNRS UMR5220, INSERM U1044, INSA-Lyon, Université Lyon 1, Hospices Civils de Lyon, Bron, France. Go to Neurology.org for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.
highly sensitive in the detection of magnetic field variation, especially generated by hemoglobin degradation products.1 It is more accurate in the detection of diffuse axonal injuries after brain injury, which is mandatory, as their presence is correlated to functional and cognitive prognosis.2

AUTHOR CONTRIBUTIONS

Thomas Ritzenthaler: drafting/revising the manuscript, analysis or interpretation of data, accepts responsibility for conduct of research and will give final approval, acquisition of data, study supervision. Leila Chamard: analysis or interpretation of data, accepts responsibility for conduct of research and will give final approval, acquisition of data. Frédéric Dailler: drafting/revising the manuscript, accepts responsibility for conduct of research and will give final approval, study supervision.

STUDY FUNDING

No targeted funding reported.

DISCLOSURE

The authors report no disclosures relevant to the manuscript. Go to Neurology.org for full disclosures.

REFERENCES

Teaching NeuroImages: Usefulness of susceptibility-weighted sequences after traumatic brain injury

Thomas Ritzenthaler, Leila Chamard and Frédéric Dailler

Neurology 2016;87:e83-e84
DOI 10.1212/WNL.0000000000003007

This information is current as of August 22, 2016

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/87/8/e83.full

Supplementary Material
Supplementary material can be found at:
http://n.neurology.org/content/suppl/2016/08/20/WNL.0000000000003007.DC1

References
This article cites 2 articles, 0 of which you can access for free at:
http://n.neurology.org/content/87/8/e83.full#ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
- **Brain trauma**
 http://n.neurology.org/cgi/collection/brain_trauma
- **Coma**
 http://n.neurology.org/cgi/collection/coma
- **MRI**
 http://n.neurology.org/cgi/collection/mri
- **Prognosis**
 http://n.neurology.org/cgi/collection/prognosis

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise

Neurology® is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright © 2016 American Academy of Neurology. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.