Teaching NeuroImages: Acute Parinaud syndrome

Emily Swinkin, MD
Esther Bui, MD

Correspondence to
Dr. Swinkin:
eswinkin@qmed.ca

Download teaching slides:
Neurology.org

An 82-year-old man with atrial fibrillation, nonadherent to rivaroxaban, presented with sudden bilateral ptosis. Examination demonstrated bilateral ptosis (figure 1), pupils midline, fixed midsize, not reactive to light but constricting to accommodation, impaired vertical eye movements, paresis of superior greater than inferior rectus, and upgaze convergence nystagmus. MRI showed infarction of bilateral third nerve nuclei and mesial thalami consistent with an artery of Percheron infarct (figure 2), presumed cardioembolic origin. Artery of Percheron is a single P1 branch that supplies the bilateral paramedian thalami and rostral midbrain. Infarcts may present with vertical gaze palsy, memory impairment, and impairment of arousal.1

AUTHOR CONTRIBUTIONS
Emily Swinkin drafted the manuscript, edited images for the publication, and revised the manuscript. Esther Bui conceptualized the study, obtained images for the manuscript, and revised the manuscript for intellectual content.

STUDY FUNDING
No targeted funding reported.

DISCLOSURE
The authors report no disclosures relevant to the manuscript. Go to Neurology.org for full disclosures.

REFERENCE

Figure 1 Bilateral ptosis

Bilateral ptosis with forehead corrugator activation on attempted eyelid opening. Infarction of the central caudal subnucleus results in bilateral dysfunction of the levator palpebrae superioris.
MRI diffusion-weighted imaging sequence demonstrates infarction of the bilateral cranial nerve III nuclei and mesial thalami corresponding to the artery of Percheron territory.
Teaching NeuroImages: Acute Parinaud syndrome
Emily Swinkin and Esther Bui
Neurology 2017;88:e164-e165
DOI 10.1212/WNL.0000000000003845

This information is current as of April 17, 2017

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/88/16/e164.full

Supplementary Material
Supplementary material can be found at:
http://n.neurology.org/content/suppl/2017/04/17/WNL.0000000000003845.DC1

References
This article cites 1 articles, 1 of which you can access for free at:
http://n.neurology.org/content/88/16/e164.full#ref-list-1

Citations
This article has been cited by 2 HighWire-hosted articles:
http://n.neurology.org/content/88/16/e164.full##otherarticles

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Cerebrovascular disease/Stroke
http://n.neurology.org/cgi/collection/all_cerebrovascular_disease_stroke
Embolism
http://n.neurology.org/cgi/collection/embolism
Infarction
http://n.neurology.org/cgi/collection/infarction
MRI
http://n.neurology.org/cgi/collection/mri

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise

Neurology is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright © 2017 American Academy of Neurology. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.