Teaching NeuroImages: Wallerian degeneration in evolving pediatric stroke

An 8-year-old girl presented with acute hemiparesis and facial palsy. MRI demonstrated right middle cerebral artery territory infarction (figure, A and B), secondary to traumatic dissection. Following discharge, multiple visits for nonspecific neurologic symptoms prompted repeat short-term imaging, initially concerning for right midbrain infarction (figure, C–H).

Imaging at presentation reveals right middle cerebral artery territory diffusion restriction on axial (A) and coronal (B) sequences without obvious white matter involvement. Two weeks later, subacute basal ganglia stroke is seen with evidence of diffusion restriction of right-sided corticospinal tracts on axial and coronal (C–H) sequences, suggesting wallerian degeneration.

From the Department of Neurology and Developmental Neurosciences, Texas Children’s Hospital, Houston.

Go to Neurology.org for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.
Wallerian anterograde demyelination following neuronal injury is a neuropathologic phenomenon with 4 radiologic phases. Conventional MRI reveals no changes 2–4 weeks postictus; however, diffusion-weighted imaging (DWI) reveals white matter signal changes with apparent diffusion coefficient correlate.ⁱ,² DWI changes in white matter tracts ipsilateral to infarct should prompt consideration for wallerian degeneration instead of new infarction.

AUTHOR CONTRIBUTIONS
Andres Jimenez-Gomez contributed to case preparation, literature review, and editing. Robert Clinton Stowe contributed to imaging selection, literature review, and manuscript editing.

STUDY FUNDING
No targeted funding reported.

DISCLOSURE
The authors report no disclosures relevant to the manuscript. Go to Neurology.org for full disclosures.

REFERENCES
Teaching NeuroImages: Wallerian degeneration in evolving pediatric stroke
Andres Jimenez-Gomez and Robert Clinton Stowe
Neurology 2017;89:e166-e167
DOI 10.1212/WNL.0000000000004422

This information is current as of September 25, 2017

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/89/13/e166.full

Supplementary Material
Supplementary material can be found at:
http://n.neurology.org/content/suppl/2017/09/25/WNL.0000000000004422.DC1

References
This article cites 2 articles, 1 of which you can access for free at:
http://n.neurology.org/content/89/13/e166.full#ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Childhood stroke
http://n.neurology.org/cgi/collection/childhood_stroke
DWI
http://n.neurology.org/cgi/collection/dwi
MRI
http://n.neurology.org/cgi/collection/mri
Other Education
http://n.neurology.org/cgi/collection/other_education

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise